Drone flight planning for safe urban operations

UTM requirements and tools
  • Juan BesadaEmail author
  • Ivan Campaña
  • Luca Bergesio
  • Ana Bernardos
  • Gonzalo de Miguel
Original Article


This paper describes the requirements of a flight planning tool for safe urban operations, which may be used to design operations considering flight constraints and limitations. This system is designed to work in coordination with an unmanned traffic management system in charge of distributing available very low level airspace resources among different operations and authorizing them, and of monitoring compliance of actual flights with flight authorizations. Representative examples of flight planning are described, as calculated by a prototype flight planning tool following this requirements.


Drone Fleet management Unmanned traffic management system UTM 


Funding information

This work was supported by UPM Project “Tecnologías Avanzadas para la Monitorización y Gestión Remota del Tráfico Aéreo de Vehículos Pilotados y no Pilotados” (RP1509550C02), and by the Spanish Ministry of Economy and Competitiveness, Grant TEC2017-88048-C2-1-R


  1. 1.
    SESAR (2016) European Drones Outlook Study unlocking the value for EuropeGoogle Scholar
  2. 2.
    Hassanalian M, Abdelkefi A (2017) . Prog Aerosp Sci 91:99. CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Nneji V, Stimpson A, Cummings M, Goodrich K (2017) In: 17th AIAA Aviation Technology, Integration and Operations Conference.
  5. 5.
    Introduction to unmanned aircraft systems. 2nd EditionGoogle Scholar
  6. 6.
    Besada JA, Bergesio L, Campana I, Vaquero-Melchor D, López-Araquistain J, Bernardos AM, Casar JR (2018) Sensors 18(4). CrossRefGoogle Scholar
  7. 7.
    Richman B, Bauer M, Michini B, Poole AJ Unmanned aerial vehicle rooftop inspection system (2017). U.S. Patent No. 9,609,288. U.S. Patent and Trademark OfficeGoogle Scholar
  8. 8.
    Barkham R, Bokhari S, Saiz A (2018) Urban big data: city management and real estate markets.Google Scholar
  9. 9.
  10. 10.
    Rossi M, Brunelli D, Adami A, Lorenzelli L, Menna F, Remondino F (2014) In: SENSORS IEEE 2014. IEEE, pp 1431–1434Google Scholar
  11. 11.
    Rau J, Jhan J, Lob C, Linb Y (2011) . Arch Photogramm Remote Sens Spatial Inform Sci 38(1):C22Google Scholar
  12. 12.
    Niethammer U, Rothmund S, Schwaderer U, Zeman J, Joswig M (2011) International archives of the photogrammetry. Remote Sens Spatial Inf Sci 38(1):C22Google Scholar
  13. 13.
    Carvajal F, Agüera F, Pérez M (2011) International archives of the photogrammetry. Remote Sens Spatial Inf Sci 38(1):C22Google Scholar
  14. 14.
    Branco LHC, Segantine PCL (2015) In: Journal of Physics: Conference Series. IOP Publishing, vol 633, pp 012122Google Scholar
  15. 15.
    Máthé K, Buṡoniu L (2015) . Sensors 15(7):14887CrossRefGoogle Scholar
  16. 16.
    González-Jorge H, Martínez-Sánchez J, Bueno M et al (2017) . Drones 1(1):2CrossRefGoogle Scholar
  17. 17.
    Airbus. Blueprint for the sky (2018). Accessed: 2019-04-18
  18. 18.
    FAA-NASA UTM. Accessed: 2019-04-18
  19. 19.
    SESAR U-Space Blueprint. Accessed: 2019-04-18
  20. 20.
    Global UTM Association. Accessed: 2019-04-18
  21. 21.
    Joint Authorities for rulemaking on unmanned systems. Accessed: 2019-04-18
  22. 22.
    JARUS guidelines on Specific Operations Risk Assessment (SORA). Ed. 2.0 (2019). Accessed: 2019-04-18
  23. 23.
    Parrot. Accessed: 2019-04-18
  24. 24.
    DJI. Accessed: 2019-04-18
  25. 25.
    Atoev S, Kwon KR, Lee SH, Moon KS (2017) In: 2017 International Conference on Information Science and Communications Technologies (ICISCT). IEEE, pp 1–3Google Scholar
  26. 26.
    DroneDeploy. Accessed: 2019-04-18
  27. 27.
    DroneUP. Accessed: 2019-04-18
  28. 28.
    APM Planner 2. Accessed: 2019-04-18
  29. 29.
    Ruscio DD, Malavolta I, Pelliccione P, Tivoli M (2016) In: Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems. ACM, pp 45–55Google Scholar
  30. 30.
    Frontera G, Besada JA, Bernardos AM, Casado E, López-Leonés J (2014) . IEEE Trans Intell Transp Syst 15(4):1550CrossRefGoogle Scholar
  31. 31.
    Frontera G (2016) Applications of formal languages to management of manned and unmanned aircraft. Ph.d. thesis, Universidad Politécnica de Madrid, Madrid.
  32. 32.
    Frontera G, Campana I, Bernardos AM, Besada JA (2019) IEEE Transactions on Aerospace and Electronic Systems. Early AccessCrossRefGoogle Scholar
  33. 33.
    Pastor E, Santamaria E, Royo P, Lopez J, Barrado C (2010) In: 2010 IEEE Aerospace Conference. IEEE, pp 1–20Google Scholar
  34. 34.
    Bozhinoski D, Di Ruscio D, Malavolta I, Pelliccione P, Tivoli M (2015) In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, pp 801–806Google Scholar
  35. 35.
    Airmap. Accessed: 2019-04-18
  36. 36.
    Unifly. Accessed: 2019-04-18
  37. 37.
    U-Space. SESAR. Accessed: 2019-04-18
  38. 38.
    Frontera G, Campana I, Bernardos AM, Besada JA (2019) IEEE Transactions on Aerospace and Electronic Systems, pp 1–1. CrossRefGoogle Scholar
  39. 39.
    Fruh C, Zakhor A (2003) . IEEE Comput Graph Appl 23(6):52CrossRefGoogle Scholar
  40. 40.
    Instituto Geográfico Nacional. Accessed: 2019-04-18
  41. 41.
    Stevenson A (2015) Oxford Dictionary of English. OUP, OxfordGoogle Scholar
  42. 42.
    Butler H, Daly M, Doyle A, Gillies S, Schaub T, Schaub T (2016) The GeoJSON Format. RFC 7946.,
  43. 43.
    Open Weather Map. Accessed: 2019-04-18

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2020

Authors and Affiliations

  1. 1.Universidad Politécnica de MadridMadridSpain

Personalised recommendations