LIPO: Indoor position and orientation estimation via superposed reflected light

  • Fan YangEmail author
  • Shining Li
  • Hongbang Zhang
  • Yang Niu
  • Cheng Qian
  • Zhe Yang
Original Article


Owing to the widespread use of LED lighting and multipath-free propagation, light-to-camera communications (LCC) hold potential in the deployment of ubiquitous, robust, and accurate indoor positioning systems. However, existing LCC-based positioning systems require the presence of the luminaires in the image, which limits the light-to-camera distance and the range of orientation estimation. We propose LIPO, which uses a smartphone to measure the signal strengths of reflections from the user’s chest. We design a set of modulation, sampling and signal recovery mechanisms, which resolves the received signal strength (RSS) of each beacon. Given the RSS measurements, LIPO estimates the user’s 3D location and heading direction via a simple trilateration algorithm. Our design overcomes the light-to-camera distance limitation which exists in most photogrammetry-based positioning approaches and extends the range of orientation estimation to full 360. We implement LIPO and extensively evaluate its performance in a 72-m2 room and a corridor. Our experiments demonstrate that LIPO can achieve decimeter location error and around 6 orientation error.


Indoor positioning Visible light Camera Smartphone LED 


Funding information

This work is supported by National Natural Science Foundation of China (NSFC) under Grant No. 61872434 and Key R&D Program of Shaanxi Province under Grant No. 2017ZDXM-GY-018.


  1. 1.
    Danakis C, Afgani M, Povey G, Underwood I, Haas H (2012) Using a cmos camera sensor for visible light communication. In: 2012 IEEE Globecom workshops. IEEE, pp 1244–1248Google Scholar
  2. 2.
    Gfeller FR, Bapst U (1979) Wireless in-house data communication via diffuse infrared radiation. Proc IEEE 67(11):1474–1486CrossRefGoogle Scholar
  3. 3.
    Hassan NU, Naeem A, Pasha MA, Jadoon T, Yuen C (2015) Indoor positioning using visible led lights: a survey. ACM Comput Surv (CSUR) 48(2):20CrossRefGoogle Scholar
  4. 4.
    Hiscocks PD, Eng P (2011) Measuring luminance with a digital camera. Syscomp Electronic Design LimitedGoogle Scholar
  5. 5.
    Huang CJ, Wei YL, Fu C, Shen WH, Tsai HM, Lin CJK (2015) Libeamscanner: Accurate indoor positioning with sweeping light beam. In: Proceedings of the 2nd International Workshop on Visible Light Communications Systems. ACM, pp 33–38Google Scholar
  6. 6.
    Jiang Y, Zhou K, He S (2007) Human visual cortex responds to invisible chromatic flicker. Nat Neurosci 10(5):657–662CrossRefGoogle Scholar
  7. 7.
    Jo K, Gupta M, Nayar SK (2016) Disco: Display-camera communication using rolling shutter sensors. ACM Trans Graph (TOG) 35(5):150CrossRefGoogle Scholar
  8. 8.
    Kahn JM, Barry JR (1997) Wireless infrared communications. Proc IEEE 85(2):265–298CrossRefGoogle Scholar
  9. 9.
    Keeping S (2012) Characterizing and minimizing led flicker in lighting applications. Electronic Products magazineGoogle Scholar
  10. 10.
    Kim HS, Kim DR, Yang SH, Son YH, Han SK (2013) An indoor visible light communication positioning system using a rf carrier allocation technique. J Light Technol 31(1):134–144CrossRefGoogle Scholar
  11. 11.
    Kotaru M, Joshi K, Bharadia D, Katti S (2015) Spotfi: Decimeter level localization using wifi. In: ACM SIGCOMM Computer communication review. ACM, vol 45, pp 269–282Google Scholar
  12. 12.
    Kuo YS, Pannuto P, Hsiao KJ, Dutta P (2014) Luxapose: Indoor positioning with mobile phones and visible light. In: Proceedings of the 20th annual international conference on Mobile computing and networking. ACM, pp 447–458Google Scholar
  13. 13.
    Li L, Hu P, Peng C, Shen G, Zhao F (2014) Epsilon: a visible light based positioning system. In: NSDI, pp 331–343Google Scholar
  14. 14.
    Li L, Xie P, Wang J (2018) Rainbowlight: Towards low cost ambient light positioning with mobile phones. In: Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. ACM, pp 445–457Google Scholar
  15. 15.
    Liu H, Gan Y, Yang J, Sidhom S, Wang Y, Chen Y, Ye F (2012) Push the limit of wifi based localization for smartphones. In: Proceedings of the 18th annual international conference on Mobile computing and networking. ACM, pp 305–316Google Scholar
  16. 16.
    Liu S, He T (2017) Smartlight: Light-weight 3d indoor localization using a single led lamp. In: Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems. ACM, pp 11Google Scholar
  17. 17.
    Lymberopoulos D, Liu J, Yang X, Choudhury RR, Handziski V, Sen S (2015) A realistic evaluation and comparison of indoor location technologies: experiences and lessons learned. In: Proceedings of the 14th international conference on information processing in sensor networks. ACM, pp 178–189Google Scholar
  18. 18.
    Nayar SK, Ikeuchi K, Kanade T (1990) Determining shape and reflectance of hybrid surfaces by photometric sampling. IEEE Trans Robot Autom 6(4):418–431CrossRefGoogle Scholar
  19. 19.
    Pathak PH, Feng X, Hu P, Mohapatra P (2015) Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun Surv Tutorials 17(4):2047–2077CrossRefGoogle Scholar
  20. 20.
    Randall J, Amft O, Bohn J, Burri M (2007) Luxtrace: indoor positioning using building illumination. Pers Ubiquit Comput 11(6):417–428CrossRefGoogle Scholar
  21. 21.
    Raskar R, Agrawal A, Tumblin J (2006) Coded exposure photography: motion deblurring using fluttered shutter. ACM Trans Graph (TOG) 25(3):795–804CrossRefGoogle Scholar
  22. 22.
    Simon G, Zachár G, Vakulya G (2017) Lookup: Robust and accurate indoor localization using visible light communication. IEEE Transactions on Instrumentation and MeasurementGoogle Scholar
  23. 23.
    Vasisht D, Kumar S, Katabi D (2016) Decimeter-level localization with a single wifi access point. In: NSDI, pp 165–178Google Scholar
  24. 24.
    Vegni AM, Biagi M (2012) An indoor localization algorithm in a small-cell led-based lighting system. In: 2012 international conference on Indoor positioning and indoor navigation (IPIN). IEEE, pp 1–7Google Scholar
  25. 25.
    Wang M, Zhang Z, Tian X, Wang X (2016) Temporal correlation of the rss improves accuracy of fingerprinting localization. In: IEEE INFOCOM 2016-the 35th annual IEEE international conference on Computer communications. IEEE, pp 1–9Google Scholar
  26. 26.
    Wang X, Gao L, Mao S, Pandey S (2017) Csi-based fingerprinting for indoor localization: a deep learning approach. IEEE Trans Veh Technol 66(1):763–776Google Scholar
  27. 27.
    Wüller D, Gabele H (2007) The usage of digital cameras as luminance meters. In: Digital photography III. International Society for Optics and Photonics, vol 6502, pp 65020UGoogle Scholar
  28. 28.
    Xu Q, Zheng R, Hranilovic S (2015) Idyll: Indoor localization using inertial and light sensors on smartphones. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, pp 307–318Google Scholar
  29. 29.
    Yang F, Li SN, Yang Z, Qian C, Gu T (2018) Spatial multiplexing for non-line-of-sight light-to-camera communications. IEEE Transactions on Mobile ComputingGoogle Scholar
  30. 30.
    Yang F, Zhai Q, Chen G, Champion AC, Zhu J, Xuan D (2016) Flash-loc: Flashing mobile phones for accurate indoor localization. In: IEEE INFOCOM 2016-the 35th annual IEEE international conference on Computer communications. IEEE, pp 1–9Google Scholar
  31. 31.
    Yang Y, Nie J, Luo J (2017) Reflexcode: Coding with superposed reflection light for led-camera communication. Proceedings of the 23th ACM MobiCom (to appear)Google Scholar
  32. 32.
    Yasir M, Ho SW, Vellambi BN (2014) Indoor positioning system using visible light and accelerometer. J Light Technol 32(19):3306–3316CrossRefGoogle Scholar
  33. 33.
    Zhang C, Zhang X (2016) Litell: robust indoor localization using unmodified light fixtures. In: Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking. ACM, pp 230–242Google Scholar
  34. 34.
    Zhang C, Zhang X (2017) Pulsar: Towards ubiquitous visible light localization. In: Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking. ACM, pp 208–221Google Scholar
  35. 35.
    Zhu S, Zhang X (2017) Enabling high-precision visible light localization in today’s buildings. In: Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services. ACM, pp 96–108Google Scholar
  36. 36.
    Zhuang Y, Hua L, Qi L, Yang J, Cao P, Cao Y, Wu Y, Thompson J, Haas H (2018) A survey of positioning systems using visible led lights. IEEE Communications Surveys & TutorialsGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.School of Journalism and New MediaXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations