The construction of sports culture industry growth forecast model based on big data


With the development of social economy, sports industry has shown its economic advantages. Sports industry has shown great potential in improving national economy, guiding social consumption, and adjusting industrial structure. However, compared with the rapid development of sports industry, the research on the growth law of sports culture industry is relatively backward, which largely restricts the further development of China’s sports industry. For this problem, this paper analyzes the feasibility of sports culture industry growth prediction based on big data theory from the perspective of data mining, proposes a sports culture industry growth prediction model based on genetic neural network, and realizes the prediction of sports culture industry growth law under the background of big data. The simulation result shows that the optimized neural network can effectively improve the efficiency and accuracy of prediction and show strong robust in predicting the laws of sports culture industry.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 9
Fig. 8
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Dewhirst T, Sparks R (2003) Intertextuality, tobacco sponsorship of sports, and adolescent male smoking culture: a selective review of tobacco industry documents[J]. J Sport Soc Issues 27(4):372–398

  2. 2.

    Wang DJ (2016) An introduction to sports materialized culture studies[J]. Journal of Beijing Sport University 39(6):13–20

  3. 3.

    Pope SW (2010) Embracing cultural contexts and critical reflexivity: (re)presenting the global sports industry in research and practice[J]. Eur Sport Manag Q 10(4):509–524

  4. 4.

    Lin XP (2000) Research on statistical index system of sports industry abroad[J]. J Tianjin Instit Phys Educ 15(2):14–17

  5. 5.

    Wang GY, Wang XZ (2010) Systematic coordination evaluation model of sports industry development and its empirical research[J]. J Shenyang Inst Phys Educ 29(2):56–59

  6. 6.

    Li Y, Liu C (2010) Establishment of the evaluation index system of China’s sports industry competitiveness based on the network analytic hierarchy process[J]. J Hebei Univ Econ Trade 31(3):35–39

  7. 7.

    Lu Q, Qiao KM (2015) Research on the evaluation index system of sports culture industry competitiveness[J]. J Chaohu Univ 31(3):95–100

  8. 8.

    Geng JF, Zhang FX, He LX et al (2015) Study on the construction and development strategy of the international competitiveness evaluation system of China’s urban sports culture industry[J]. J Shandong Instit Phys Educ 28(2):17–30

  9. 9.

    Wang XL, Hu AY (2013) Empirical study on regional differences in competitiveness of sports culture industry[J]. J Wuhan Inst Physic Educ 47(1):49–57

  10. 10.

    Shen GQ, Tang HY, He LY et al (2003) Research on statistical index system and statistical methods of sports industry in China [J]. Hubei Sports Sci Technol 22(1):7–9

  11. 11.

    Yang Y, Li H, Zheng W et al (2019) Experimental study on calcining process of secondary coated ceramsite solidified chromium contaminated soil. Sci Adv Mater 11(2):208–214

  12. 12.

    Xie XF (2011) On the logic of interaction between and strategies for development of the sport industry and the network culture industry[J]. J Phys Educ 4(21):301–309

  13. 13.

    Allam Z, Dhunny ZA (2019) On big data, artificial intelligence and smart cities[J]. Cities 89:80–91

  14. 14.

    Wang L, Zhang J, Yongping LI et al (2011) A statistical analysis of typhoon frequency and application in design wave height[J]. Acta Oceanol Sin 30(4):24–29

  15. 15.

    Hui S (2011) Evaluation of regional cultural creative Industriesâ. Development based on fuzzy AHP method[J]. Appl Mech Mater 39(2):592–597

  16. 16.

    Yang CH. (2014) Evaluating the relation between cultural capital and creative industry development by grey relation analysis: comparable study of creative cities in Taiwan and Mainland China[C]// Portland Int Conf Manag Eng Technol

  17. 17.

    Smith AJ, Dieppe P, Vernon K et al (2010) The competitive advantage of nations: is Porter’s Diamond Framework a new theory that explains the international competitiveness of countries[J]. Southern Afr Bus Rev 14(1):1199–1204

  18. 18.

    Rugman AM, Verbeke A (2010) How to operationalize porter’s diamond of international competitiveness[J]. Int Exec 35(4):283–299

  19. 19.

    Kai F, Zhou Y, Shuang W et al (2018) Assessing national renewable energy competitiveness of the G20: a revised Porter’s Diamond Model[J]. Renew Sust Energ Rev 93(3):719–731

  20. 20.

    Jiang W, Carter DR, Fu H et al (2019) The impact of the biomass crop assistance program on the United States forest products market: an application of the global forest products model[J]. Forests 10(3):215–219

  21. 21.

    Ye Y, Zhao Y, Shang J, Zhang L (2019) A hybrid IT framework for identifying high-quality physicians using big data analytics[J]. Int J Inf Manag 47:65–75

  22. 22.

    Chang W. (2017) Application research of AHP in competitiveness evaluation of regional sports industry[C]// Int Conf Smart City Syst Eng

  23. 23.

    Liang X, Huang S (2016) Evaluation system research of Core competitiveness of sports products and growing environment[J]. J Comput Theor Nanosci 13(12):9733–9737

  24. 24.

    Gu W, Foster K, Shang J, Wei L (2019) A game-predicting expert system using big data and machine learning[J]. Expert Syst Appl 130:293–305

  25. 25.

    Yunguo H (2017) The opportunity and challenge of the age of big data[C]//IOP Conference Series: Earth and Environmental Science. IOP Publ 94(1):12–74

  26. 26.

    Wang L, Hui Z, Ranjan R et al (2014) Estimating the statistical characteristics of remote sensing big data in the wavelet transform domain[J]. Emerg Topics in Comput IEEE Transact 2(3):324–337

  27. 27.

    Hossain MS, Muhammad G (2019) Emotion recognition using deep learning approach from audio–visual emotional big data[J]. Inform Fusion 49:69–78

  28. 28.

    Hu H, Wen Y, Chua TS et al (2017) Toward scalable systems for big data analytics: a technology tutorial[J]. IEEE Access 2(1):652–687

  29. 29.

    Darwish TSJ, Bakar KA (2018) Fog based intelligent transportation big data analytics in the internet of vehicles environment: motivations, architecture, challenges, and critical issues[J]. IEEE Access 6(99):15679–15701

  30. 30.

    Reng CS (2017) Opportunities and challenges for the development of China’s sports industry under the background of the new deal of sports industry[J]. Sport World (Scholarly) 7(4):24–25

  31. 31.

    Chung TW (2016) A study on logistics cluster competitiveness among Asia Main countries using the Porter’s Diamond Model[J]. Asian J Shipp Logist 32(4):257–264

  32. 32.

    Ling KE (2009) Relevance of regional information industry to economic growth[J]. J Southwest Jiaotong Univ 44(5):794–798

  33. 33.

    Jie X, Deng D, Demiryurek U et al (2015) Mining the situation: spatiotemporal traffic prediction with big data[J]. IEEE J Select Topics Signal Proc 9(4):702–715

  34. 34.

    Abbasi R, Ackermann M, Adams J, Ahlers M, Ahrens J, Andeen K, Auffenberg J, Bai X, Baker M, Barwick SW, Bay R, Bazo Alba JL, Beattie K, Becka T, Becker JK, Becker KH, Berghaus P, Berley D, Bernardini E, Bertrand D, Besson DZ, Bingham B, Blaufuss E, Boersma DJ, Bohm C, Bolmont J, Böser S, Botner O, Braun J, Breeder D, Burgess T, Carithers W, Castermans T, Chen H, Chirkin D, Christy B, Clem J, Cowen DF, D’Agostino MV, Danninger M, Davour A, Day CT, Depaepe O, de Clercq C, Demirörs L, Descamps F, Desiati P, de Vries-Uiterweerd G, DeYoung T, Diaz-Velez JC, Dreyer J, Dumm JP, Duvoort MR, Edwards WR, Ehrlich R, Eisch J, Ellsworth RW, Engdegård O, Euler S, Evenson PA, Fadiran O, Fazely AR, Feusels T, Filimonov K, Finley C, Foerster MM, Fox BD, Franckowiak A, Franke R, Gaisser TK, Gallagher J, Ganugapati R, Gerhardt L, Gladstone L, Glowacki D, Goldschmidt A, Goodman JA, Gozzini R, Grant D, Griesel T, Groß A, Grullon S, Gunasingha RM, Gurtner M, Ha C, Hallgren A, Halzen F, Han K, Hanson K, Hardtke R, Hasegawa Y, Haugen J, Hays D, Heise J, Helbing K, Hellwig M, Herquet P, Hickford S, Hill GC, Hodges J, Hoffman KD, Hoshina K, Hubert D, Huelsnitz W, Hughey B, Hülß JP, Hulth PO, Hultqvist K, Hussain S, Imlay RL, Inaba M, Ishihara A, Jacobsen J, Japaridze GS, Johansson H, Jones A, Joseph JM, Kampert KH, Kappes A, Karg T, Karle A, Kawai H, Kelley JL, Kiryluk J, Kislat F, Klein SR, Kleinfelder S, Klepser S, Kohnen G, Kolanoski H, Köpke L, Kowalski M, Kowarik T, Krasberg M, Kuehn K, Kujawski E, Kuwabara T, Labare M, Laihem K, Landsman H, Lauer R, Laundrie A, Leich H, Leier D, Lewis C, Lucke A, Ludvig J, Lundberg J, Lünemann J, Madsen J, Maruyama R, Mase K, Matis HS, McParland CP, Meagher K, Meli A, Merck M, Messarius T, Mészáros P, Minor RH, Miyamoto H, Mohr A, Mokhtarani A, Montaruli T, Morse R, Movit SM, Münich K, Muratas A, Nahnhauer R, Nam JW, Nießen P, Nygren DR, Odrowski S, Olivas A, Olivo M, Ono M, Panknin S, Patton S, Pérez de los Heros C, Petrovic J, Piegsa A, Pieloth D, Pohl AC, Porrata R, Potthoff N, Pretz J, Price PB, Przybylski GT, Rawlins K, Razzaque S, Redl P, Resconi E, Rhode W, Ribordy M, Rizzo A, Robbins WJ, Rodrigues JP, Roth P, Rothmaier F, Rott C, Roucelle C, Rutledge D, Ryckbosch D, Sander HG, Sarkar S, Satalecka K, Sandstrom P, Schlenstedt S, Schmidt T, Schneider D, Schulz O, Seckel D, Semburg B, Seo SH, Sestayo Y, Seunarine S, Silvestri A, Smith AJ, Song C, Sopher JE, Spiczak GM, Spiering C, Stanev T, Stezelberger T, Stokstad RG, Stoufer MC, Stoyanov S, Strahler EA, Straszheim T, Sulanke KH, Sullivan GW, Swillens Q, Taboada I, Tarasova O, Tepe A, ter-Antonyan S, Tilav S, Tluczykont M, Toale PA, Tosi D, Turčan D, van Eijndhoven N, Vandenbroucke J, van Overloop A, Viscomi V, Vogt C, Voigt B, Vu CQ, Wahl D, Walck C, Waldenmaier T, Waldmann H, Walter M, Wendt C, Westerhof S, Whitehorn N, Wharton D, Wiebusch CH, Wiedemann C, Wikström G, Williams DR, Wischnewski R, Wissing H, Woschnagg K, Xu XW, Yodh G, Yoshida S (2009) The IceCube data acquisition system: signal capture, digitization, and timestamping[J]. Nucl Instrum Methods Phys Res 601(3):294–316

  35. 35.

    Hu R, Zhao HM, Hong X (2017) A big data intelligence analysis expression method based on machine learning[J]. Clust Comput 17(3):1–8

  36. 36.

    Franca CGLDL, Hervás R, Johnson E et al (2017) Extended body-angles algorithm to recognize activities within intelligent environments[J]. J Ambient Intell Humaniz Comput 8(4):531–549

  37. 37.

    Sinha S, Mandal N (2017) Design and analysis of an intelligent flow transmitter using artificial neural network[J]. IEEE Sensors Letters 1(3):1–4

  38. 38.

    Yang IB, Na SG, Heo H (2017) Intelligent algorithm based on support vector data description for automotive collision avoidance system[J]. Int J Automot Technol 18(1):69–77

  39. 39.

    Yakopcic C, Hasan R, Taha TM (2017) Flexible memristor based neuromorphic system for implementing multi-layer neural network algorithms[J]. Int J Parallel Emergent & Distrib Syst 4(2072):1–22

  40. 40.

    Yang C, Kim H, Adhikari SP et al (2017) A circuit-based neural network with hybrid learning of backpropagation and random weight change algorithms[J]. Sensors 17(1):16–23

  41. 41.

    Şentaş A, Küçükayvaz F, Kul S et al (2018) Performance evaluation of support vector machine and convolutional neural network algorithms in real-time vehicle type and color classification[J]. Evol Intel 1(19):1–9

  42. 42.

    Liu P, Zeng Z, Wang J (2017) Complete stability of delayed recurrent neural networks with Gaussian activation functions[J]. Neural Netw 3(85):21–32

  43. 43.

    Liu P, Zeng Z, Wang J (2018) Multistability of recurrent neural networks with nonmonotonic activation functions and unbounded time-varying delays[J]. IEEE Trans Neural Netw Learn Syst 29(7):3000–3010

  44. 44.

    Fan W, Lin YY, Zhong-Shen LI (2017) Prediction of the creep of piezoelectric ceramic based on BP neural network optimized by genetic algorithm[J]. Acta Metrologica Sinica 38(4):429–434

  45. 45.

    Lin TH, Chiu SH, Tsai KC (2006) Supervised Feature Ranking using a genetic algorithm optimized artificial neural network[J]. Cheminform 37(41):1604–1614

Download references

Author information

Correspondence to Ke Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, K. The construction of sports culture industry growth forecast model based on big data. Pers Ubiquit Comput (2019).

Download citation


  • Sports culture industry
  • Big data
  • Data mining
  • Genetic neural network