Personal and Ubiquitous Computing

, Volume 23, Issue 5–6, pp 633–651 | Cite as

Holonification model for a multilevel agent-based system

Application to road traffic
  • Igor Haman TchappiEmail author
  • Stéphane Galland
  • Vivient Corneille Kamla
  • Jean-Claude Kamgang
  • Cyrille Merleau S. Nono
  • Hui Zhao
Original Article


Organizational models and holonic multiagent systems are growing as a powerful tool for modeling and developing a large-scale complex system. The main issue in deploying holonic multiagent systems is the building of the holonic model called holarchy. This paper presents a novel density approach to cluster and hierarchize population in order to build the initial holarchy. The proposal extends Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. Moreover, multilevel indicators based on standard deviation are proposed in order to evaluate the consistency of the holonification process. The proposed model is tested in a road traffic modeling in order to build the initial holarchy. The paper presents also the main research direction towards the control of internal and external stimuli of traffic over time.


DBSCAN Holonic multiagent system Road traffic Multilevel model Initial holarchy 


  1. 1.
    Abouaïssa H, Kubera Y, Morvan G (2014) Dynamic hybrid traffic flow modeling arXiv:1401.6773v1
  2. 2.
    Adam E (2000) Modèle d’organisation multi-agent pour l’aide au travail coopératif dans les processus d’entreprise: application aux systèmes administratifs complexes. PhD thesis, Université de Valenciennes et du Hainaut-Cambresis, in FrenchGoogle Scholar
  3. 3.
    Birant D, Kut A (2007) ST-DBSCAN: an algorithm for clustering spatial-temporal data. Data Knowl Eng 60(1):208–221. CrossRefGoogle Scholar
  4. 4.
    Bouha N, Morvan G, Hassane A, Kubera Y (2015) A first step towards dynamic hybrid traffic modelling. In: Proceedings of 29th European Conf. on modelling and simulation (ECMS), pp 64–70Google Scholar
  5. 5.
    Bourrel E, Lesort J (2003) Mixing micro and macro representations of traffic flow: a hybrid model based on the lwr theory. In: 82th Annual Meeting of the Transportation Research BoardGoogle Scholar
  6. 6.
    Burghout W (2004) Hybrid microscopic-mesoscopic traffic simulation. PhD thesis, Royal Institute of TechnologyGoogle Scholar
  7. 7.
    Cossentino M, Gaud N, Hilaire V, Galland S, Koukam A (2010) Aspecs: an agent-oriented software process for engineering complex systems. Auton Agent Multi-Agent Syst 20(2):260–304. CrossRefGoogle Scholar
  8. 8.
    Crespi V, Galstyan A, Lerman K (2008) Top-down vs bottom-up methodologies in multi-agent system design. Auton Robot 24(3):303–313. CrossRefGoogle Scholar
  9. 9.
    Crociani L, Gorrini A, Feliciani C, Vizzari G, Nishinari K, Bandini S (2017) Micro and macro pedestrian dynamics in counterflow: the impact of social groups. CoRR arXiv:1711.08225
  10. 10.
    Di Marzo Serugendo G, Foukia N, Hassas S, Karageorgos A, Mostéfaoui S K, Rana OF, Ulieru M, Valckenaers P, Van Aart C (2004) Self-organisation: Paradigms and applications. In: Di marzo serugendo G, Karageorgos A, Rana OF, Zambonelli F (eds) Engineering Self-Organising Systems. Springer, Berlin, pp 1–19Google Scholar
  11. 11.
    Esmaeili A, Mozayani N, Motlagh MRJ (2014) Multi-level holonification of multi-agent networks. In: 2014 Iranian Conference on Intelligent Systems (ICIS), pp 1–5.
  12. 12.
    Esmaeili A, Mozayani N, Motlagh MRJ, Matson ET (2017) A socially-based distributed self-organizing algorithm for holonic multi-agent systems: case study in a task environment. Cogn Syst Res 43:21–44. CrossRefGoogle Scholar
  13. 13.
    Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: 2nd International Conference on Knowledge Discovery and Data mining, pp 226–231Google Scholar
  14. 14.
    Ferber J, Gutknecht O (1998) A meta-model for the analysis and design of organizations in multi-agent systems. In: Proceedings International Conference on Multi Agent Systems (Cat. No.98EX160), pp 128–135Google Scholar
  15. 15.
    Ferber J, Gutknecht O, Michel F (2004) From agents to organizations: an organizational view of multi-agent systems. In: Giorgini P, Müller J P, Odell J (eds) Agent-oriented software engineering IV. Springer, Berlin, pp 214–230CrossRefGoogle Scholar
  16. 16.
    Galland S, Gaud N, Rodriguez S, Hilaire V (2010) Janus: Another yet general-purpose multiagent platform. In: the 7th Agent- Oriented Software Engineering Technical Forum (TFGAOSE-10). IEEE Computer Society Press, ParisGoogle Scholar
  17. 17.
    Galland S, Knapen L, Auh Yasar, Gaud N, Janssens D, Lamotte O, Koukam A, Wets G (2014) Multi-agent simulation of individual mobility behavior in carpooling. Int J Transp Res Part C 45:83–98. CrossRefGoogle Scholar
  18. 18.
    Galland S, Rodriguez S, Gaud N (2017) Run-time environment for the sarl agent-programming language: the example of the janus platform, pp –.
  19. 19.
    Gaud N (2007) Holonic multi-agent systems: From the analysis to the implementation. metamodel, methodology and multilevel simulation. PhD Thesis Université de Technologie de Belfort-montbéliard, BelfortGoogle Scholar
  20. 20.
    Gaud N, Galland S, Gechter F, Hilaire V, Koukam A (2008) Holonic multilevel simulation of complex systems: Application to real-time pedestrians simulation in virtual urban environment. Simulation Modelling Practice and Theory. Elsevier, New York, pp 1659–1676Google Scholar
  21. 21.
    Gerber C, Siekmann J, Vierke G (1999) Holonic multi-agent systems. Research Center for Artificial Intelligence (DFKI) Tech Rep 681, GermanGoogle Scholar
  22. 22.
    Jaume B (2010) Fundamentals of Traffic Simulation, Springer, BerlinGoogle Scholar
  23. 23.
    Jean-Michel C, Franck G, Pablo G, Abder K (2007) Physics inspired multiagent system for vehicle platooning. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’07. ACM, New York, pp 184:1–184:3.
  24. 24.
    Kavathekar P, Chen Y (2011) Vehicle platooning: A brief survey and categorization. In: Proceedings of the ASME Design Engineering Technical Conference, vol 3, pp 829–845.
  25. 25.
    Koestler A (1967) The Ghost in The Machine, Hutchinson, LondonGoogle Scholar
  26. 26.
    Mammar S, Mammar S, Lebacque J (2006) Highway traffic hybrid macro-micro simulation model. In: 11th IFAC Symposium on Control in Transportation SystemGoogle Scholar
  27. 27.
    Mella P (2009) Piero mella the holonic revolution holons, holarchies and holonic networks the ghost in the production machine piero mella t he holonic re volution, pp –.
  28. 28.
    Neha S, Amit G (2016) Aged (automatic generation of eps for dbscan). International Journal of Computer Science and Information Security (IJCSIS)Google Scholar
  29. 29.
    Poschinger A, Kates R, Keller H (2002) Coupling of concurrent macroscopic and microscopic traffic flow models using hybrid stochastic and deterministic disaggregation. Transportation and Traffic Theory for the 21st centuryGoogle Scholar
  30. 30.
    Rodriguez S (2005) From analysis to design of holonic multi-agent systems: a framework methodological guidelines and applications. PhD thesis, Université de Technologie de Belfort-MontbéliardGoogle Scholar
  31. 31.
    Rodriguez S, Hilaire V, Koukam A (2007) Towards a holonic multiple aspect analysis and modeling approach for complex systems: application to the simulation of industrial plants. Simulation Modelling Practice and Theory. Elsevier, New York, pp 521–543Google Scholar
  32. 32.
    Rodriguez S, Gaud N, Galland S (2014) SARL: A general-purpose agent-oriented programming language. In: the 2014 IEEE/WIC/ACM International Conference on Intelligent Agent Technology. IEEE Computer Society Press, WarsawGoogle Scholar
  33. 33.
    Sewall J, Wilkie D, Lin MC (2011) Interactive hybrid simulation of large-scale traffic. ACM Trans Graph 30(6):135:1–135:12. CrossRefGoogle Scholar
  34. 34.
    Sharma A, Srinivasan D, Kumar DS (2016) A comparative analysis of centralized and decentralized multi-agent architecture for service restoration. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp 311–318.
  35. 35.
    Tchappi I, Kamla V, Galland S, Kamgang J (2017) Towards an multilevel agent-based model for traffic simulation, pp 887–892Google Scholar
  36. 36.
    Tchappi IH, Galland S, Kamla VC, Kamgang JC (2018) A brief review of holonic multi-agent models for traffic and transportation systems, vol 134., the 15th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2018) / The 13th International Conference on Future Networks and Communications (FNC-2018) / Affiliated WorkshopsCrossRefGoogle Scholar
  37. 37.
    Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulations. Phys Rev E 62(2):1805–1824. CrossRefzbMATHGoogle Scholar
  38. 38.
    Vèque V, Kaisser F, Johnen CAB (2013) Convoy: a new cluster-based routing protocol for vehicular networks In: Vehicular Networks: Models and Algorithms. ISTE Publishing Knowledge/Wiley, New YorkGoogle Scholar
  39. 39.
    Wang Y, Han Z (1998) Stability of an automated vehicle platoon. In: Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), vol 2, pp 950–954.

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of SciencesUniversity of NgaoundereNgaoundereCameroon
  2. 2.LE2IUniversity of Burgundy Franche-Comté, UTBMBelfortFrance
  3. 3.ENSAIUniversity of NgaoundereNgaoundereCameroon
  4. 4.Max Planck Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations