Personal and Ubiquitous Computing

, Volume 22, Issue 5–6, pp 1005–1015 | Cite as

Photographer trajectory detection from images

  • Linwei FanEmail author
  • Huiyu Li
  • Mengjun Li
  • Yan Zhang
  • Jinjiang Li
  • Caiming Zhang
Original Article


This paper proposes a novel method for detecting a photographer’s shooting trajectory based on select images. Firstly, in a Lab color space, directional information and perceived color information were combined, and similar images were found by a color difference histogram. Local invariant descriptors were then constructed by the contrast context histogram method to match feature point areas and their context, and to judge whether these areas corresponded. Through this, the corresponding relationship for feature points between image sequences was obtained. Furthermore, the essential matrix for a pair of images was obtained through the singular value decomposition method to determine photographer trajectories.


Image matching Image similarity Feature point Image context Essential matrix 


Funding information

This study received funding from the National Natural Science Foundation of China (Grants: 61472227, 61772319, 61602277).


  1. 1.
    Noah S, Steven MS, Richard S (2006) Photo tourism: exploring photo collections in 3D. ACM Trans Graph (TOG) 25(3):835–846CrossRefGoogle Scholar
  2. 2.
    Kalogerakis E, Vesselova O, Hays J, et al (2009) Image sequence geolocation with human travel priors. IEEE 12th International Conference on Computer Vision, pp.253–260Google Scholar
  3. 3.
    Ryde J, Corso JJ (2012) Fast voxel maps with counting bloom filters. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 4413–4418Google Scholar
  4. 4.
    Tsung-Yi Lin, Belongie S, Hays J(2013). Cross-view image geolocalization. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 891–898Google Scholar
  5. 5.
    Xiong B, Grauman K (2014) Detecting snap points in egocentric video with a web photo prior. European Conference on Computer Vision(ECCV), pp 282–298Google Scholar
  6. 6.
    Tian Y, Chen C, Shah M (2017) Cross-view image matching for geo-localization in urban environments. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1998–2006Google Scholar
  7. 7.
    Castaldo F, Zamir A, Angst R (2015) Semantic cross-view matching. IEEE International Conference on Computer Vision (ICCV), pp 9–17Google Scholar
  8. 8.
    Zhu H, Deng L (2013) Image matching using gradient orientation selective cross correlation. Optik-Int J Light Electron Opt 124(20):4460–4464CrossRefGoogle Scholar
  9. 9.
    Do TT, Cheung NM (2018) Embedding based on function approximation for large scale image search. IEEE Trans Pattern Anal Mach Intell PP(99):626–638CrossRefGoogle Scholar
  10. 10.
    Yan N, Liao M, Jung C (2017) Super-speed up robust features image geometrical registration algorithm. IET Image Process 10(11):848–864Google Scholar
  11. 11.
    Chun-rong H, Chu-song C, Pau-choo C (2008) Contrast context histogram—an efficient discriminating local descriptor for object recognition and image matching. Pattern Recogn 41(10):3071–3077CrossRefGoogle Scholar
  12. 12.
    Vaishnavi D, Subashini TS (2015) A passive technique for image forgery detection using contrast context histogram features. Int J Electron Secur Digit Forensics 7(3):278–289CrossRefGoogle Scholar
  13. 13.
    Wei Z, Sun Y, Lin J, Liu S (2018) Learning adaptive receptive fields for deep image parsing networks. Comput Vis Media. CrossRefGoogle Scholar
  14. 14.
    Lu Z, Yang J, Liu Q (2017) Face image retrieval based on shape and texture feature fusion. Comput Vis Media 3(4):359–368CrossRefGoogle Scholar
  15. 15.
    Zhang J, Gai D, Zhang X (2017) Multi-example feature-constrained back-projection method for image super-resolution. Comput Vis Media 3(1):73–82CrossRefGoogle Scholar
  16. 16.
    Song X, Jiang S, Herranz L (2017) Multi-scale multi-feature context modeling for scene recognition in the semantic manifold. IEEE Trans Image Process PP(99):1–1Google Scholar
  17. 17.
    Zand M, Doraisamy S, Halin AA (2017) Visual and semantic context modeling for scene-centric image annotation. Multimedia Tools Appl 76(6):8547–8571CrossRefGoogle Scholar
  18. 18.
    Putzu L, Ruberto CD (2017) Rotation invariant co-occurrence matrix features. International Conference on Image Analysis and Processing pp391–401Google Scholar
  19. 19.
    Anna B, Andrew Z, Xavier M (2008) Scene classification using a hybrid generative/discriminative approach. IEEE Trans Pattern Anal Mach Intell 30(4):712–727CrossRefGoogle Scholar
  20. 20.
    Shen Y, Guturu PP, Buckles BP (2012) Wireless capsule endoscopy video segmentation using an unsupervised learning approach based on probabilistic latent semantic analysis with scale invariant features. IEEE Trans Inf Technol Biomed 16(1):98–105CrossRefGoogle Scholar
  21. 21.
    Hu S-M, Zhang F-L, Wang M et al (2013) PatchNet: a patch-based image representation for interactive library-driven image editing. ACM Trans Graph (TOG) 32(6):196–206Google Scholar
  22. 22.
    Lin TY, Belongie S, Hays J (2013) Cross-view image geolocalization, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 891–898Google Scholar
  23. 23.
    Zou H, Da F, Wang Z (2014) 3D face recognition by sliding complex wavelet structural similarity index on detail geometry images. J Comput Inf Syst 9(20):8333–8341Google Scholar
  24. 24.
    Plant W, Schaefer G (2010) Image retrieval on the honeycomb image browser, IEEE International Conference on Image Processing (ICIP), pp 3161–3164Google Scholar
  25. 25.
    Quellec G, Lamard M, Cazuguel G, Cochener B, Roux C (2012) Fast wavelet-based image characterization for highly adaptive image retrieval. IEEE Trans Image Process 21(4):1613–1623MathSciNetCrossRefGoogle Scholar
  26. 26.
    Schulze C, Frister R, Shafait F (2013) Eye-tracker based part-image selection for image retrieval. IEEE International Conference on Image Processing (ICIP), pp 4392–4396Google Scholar
  27. 27.
    Barnes C, Zhang FL (2017) A survey of the state-of-the-art in patch-based synthesis. Computational Visual Media 3(1):1–18CrossRefGoogle Scholar
  28. 28.
    Darabi S, Shechtman E, Barnes C, et al (2012). Image melding: combining inconsistent images using patch-based synthesis. ACM Trans Graph 31(4): 82: 1–10CrossRefGoogle Scholar
  29. 29.
    Luo S, Sun Y, Shen I (2015) Geometrically consistent stereoscopic image editing using patch-based synthesis. IEEE Trans Vis Comput Graph 21(1):56–67CrossRefGoogle Scholar
  30. 30.
    Sang HP, Gao Y, Shen D (2016) Multi-atlas based segmentation editing with interaction-guided patch selection and label fusion. IEEE Trans Biomed Eng 63(6):1208–1219CrossRefGoogle Scholar
  31. 31.
    Barnes C, Shechtman E, Finkelstein A et al (2009) Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Trans Graph (Proc. SIGGRAPH), 28(3), Article No. 24Google Scholar
  32. 32.
    D Amiano L, Cozzolino D, Poggi G (2017) A Patchmatch-based dense-field algorithm for video copy-move detection and localization. IEEE Transactions on Circuits & Systems for Video Technology PP(99):1–1Google Scholar
  33. 33.
    Lu J, Li Y, Yang H et al (2017) Patchmatch filter: edge-aware filtering meets randomized search for visual correspondence. IEEE Trans Pattern Anal Mach Intell 39(9):1866–1879CrossRefGoogle Scholar
  34. 34.
    Lin X, Yu ZL, Gu Z (2017) Batch image alignment via subspace recovery based on alternative sparsity pursuit. Comput Vis Media 3(3):295–304CrossRefGoogle Scholar
  35. 35.
    Kim J, Grauman K (2010) Asymmetric region-to-image matching for comparing images with generic object categories. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2344–2351Google Scholar
  36. 36.
    Ye Y, Shen L, Hao M (2017) Robust optical-to-SAR image matching based on shape properties. IEEE Geosci Remote Sens Lett 14(4):564–568CrossRefGoogle Scholar
  37. 37.
    Huang Z, Wei Z, Zhang G (2017) RWBD: learning robust weighted binary descriptor for image matching. IEEE Transactions on Circuits and Systems for Video Technology, PP(99):1–1Google Scholar
  38. 38.
    Ge S, Jin X, Ye Q, Luo Z, Li Q (2018) Image editing by object-aware optimal boundary searching and mixed-domain composition. Comput Vis Media 4:71–82. CrossRefGoogle Scholar
  39. 39.
    Liu G-H, Yang J-Y (2013) Content-based image retrieval using color difference histogram. Pattern Recogn 46(1):188–198CrossRefGoogle Scholar
  40. 40.
    Gao YQ, Huang WL, Qiao Y (2017) Learning multiple local binary descriptors for image matching. Neurocomputing 266:239–246CrossRefGoogle Scholar
  41. 41.
    Wu W, Zhu H, Zhang Q (2017) Epipolar rectification by singular value decomposition of essential matrix. Multimed Tools Appl 1:1–25Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Linwei Fan
    • 1
    • 2
    Email author
  • Huiyu Li
    • 1
    • 2
  • Mengjun Li
    • 3
  • Yan Zhang
    • 4
    • 2
  • Jinjiang Li
    • 4
    • 2
  • Caiming Zhang
    • 1
    • 2
  1. 1.School of Computer Science and TechnologyShandong UniversityJinanChina
  2. 2.Co-innovation Center of Shandong Colleges and Universities: Future Intelligent ComputingYantaiChina
  3. 3.School of Mechanical Electronic & Information EngineeringChina University of Mining & TechnologyBeijingChina
  4. 4.School of Computer Science and TechnologyShandong Technology and Business UniversityYantaiChina

Personalised recommendations