Personal and Ubiquitous Computing

, Volume 22, Issue 4, pp 633–646 | Cite as

Towards accurate cursorless pointing: the effects of ocular dominance and handedness

  • Katrin PlaumannEmail author
  • Matthias Weing
  • Christian Winkler
  • Michael Müller
  • Enrico Rukzio
Original Article


Pointing gestures are our natural way of referencing distant objects and thus widely used in HCI for controlling devices. Due to current pointing models’ inherent inaccuracies, most of the systems using pointing gestures so far rely on visual feedback showing users where they point at. However, in many environments, e.g., smart homes, it is rarely possible to display cursors since most devices do not contain a display. Therefore, we raise the question of how to facilitate accurate pointing-based interaction in a cursorless context. In this paper we present two user studies showing that previous cursorless techniques are rather inaccurate as they lack important considerations about users’ characteristics that would help in minimizing inaccuracy. We show that pointing accuracy could be significantly improved by acknowledging users’ handedness and ocular dominance. In a first user study (n= 33), we reveal the large effect of ocular dominance and handedness on human pointing behavior. Current ray-casting techniques neglect both ocular dominance and handedness as effects onto pointing behavior, precluding them from accurate cursorless selection. With a second user study (n= 25), we show that accounting for ocular dominance and handedness yields to significantly more accurate selections compared to two previously published ray-casting techniques. This speaks for the importance of considering users’ characteristics further to develop better selection techniques to foster more robust accurate selections.


Cursorless distant pointing Ocular dominance Handedness Ray casting Smart environments Interaction Smart objects 



This work was conducted within the Emmy Noether research group Mobile Interaction with Pervasive User Interfaces funded by DFG and the SenseEmotion project funded by BMBF.


  1. 1.
    Angelini L, Carrino F, Carrino S, Caon M, Khaled OA, Baumgartner J, Sonderegger A, Lalanne D, Mugellini E (2014) Gesturing on the steering wheel: a user-elicited taxonomy. In: Proceedings of automotiveUI. ACM, New York, pp 31:1–31:8
  2. 2.
    Argelaguet F, Andujar C (2009) Efficient 3d pointing selection in cluttered virtual environments. IEEE Comput Graph Appl Mag 29(6):34–43CrossRefGoogle Scholar
  3. 3.
    Aswathappa J, Kutty K, Annamalai N (2011) Relationship between handedness and ocular dominance in healthy young adults - a study. Int J Pharm 2(2):76–78Google Scholar
  4. 4.
    Biguer B, Prablanc C, Jeannerod M (1984) The contribution of coordinated eye and head movements in hand pointing accuracy. Exp Brain Res 55(3):462–469CrossRefGoogle Scholar
  5. 5.
    Bowman MC, Johannson RS, Flanagan JR (2009) Eye-hand coordination in a sequential target contact task. Exp Brain Res 195(2):273–283CrossRefGoogle Scholar
  6. 6.
    Caon M, Yue Y, Tscherrig J, Mugellini E, Abou Khaled O (2011) Context-Aware 3D Gesture interaction based on multiple kinects, IARIA. In: Proceedings of AMBIENT, pp 7–12Google Scholar
  7. 7.
    Cockburn A, Quinn P, Gutwin C, Ramos G, Looser J (2011) Air pointing: design and evaluation of spatial target acquisition with and without visual feedback. Int J Hum-Comput St 69(6):401–414CrossRefGoogle Scholar
  8. 8.
    Corradini A, Cohen PR (2002) Multimodal speech-gesture interface for handfree painting on a virtual paper using partial recurrent neural networks as gesture recognizer. In: Proceedings of IJCNN, vol 3. IEEE, pp 2293–2298Google Scholar
  9. 9.
    Friston K (2011) What is optimal about motor control? Neuron 72(3):488–498CrossRefGoogle Scholar
  10. 10.
    Helsen WF, Elliott D, Starkes JL, Ricker KL (1998) Temporal and spatial coupling of point of gaze and hand movements in aiming. J Motor Behav 30(3):249–259CrossRefGoogle Scholar
  11. 11.
    Helsen WF, Elliott D, Starkes JL, Ricker KL (2000) Coupling of eye, finger, elbow, and shoulder movements during manual aiming. J Motor Behav 32(3):241–248CrossRefGoogle Scholar
  12. 12.
    Jota R, Nacenta MA, Jorge JA, Carpendale S, Greenberg S (2010) A comparison of ray pointing techniques for very large displays. In: Proceedings of GI 2010, pp 269–276Google Scholar
  13. 13.
    Kawato M (1999) Internal models for motor control and trajectory planning. Curr opin neurobiol 9(6):718–727CrossRefGoogle Scholar
  14. 14.
    Khan AZ, Crawford JD (2001) Ocular dominance reverses as a function of horizontal gaze angle. Vis Res 41(14):1743–1748CrossRefGoogle Scholar
  15. 15.
    Khan AZ, Crawford JD (2003) Coordinating one hand with two eyes: optimizing for field of view in a pointing task. Vision res 43(4):409–417CrossRefGoogle Scholar
  16. 16.
    König WA, Gerken J, Dierdorf S, Reiterer H (2009) Adaptive pointing design and evaluation of a precision enhancing technique for absolute pointing devices. In: Proceedings of INTERACT, 5726. Springer, Berlin, pp 658–671Google Scholar
  17. 17.
    Kopper R, Bowman DA, Silva MG, McMahan RP (2010) A human motor behavior model for distal pointing tasks. Int J Hum-Comput St 68(10):603–615CrossRefGoogle Scholar
  18. 18.
    Kranstedt A, Lücking A, Pfeiffer T, Rieser H, Staudacher M (2006) Measuring and reconstructing pointing in visual contexts. In: Proceedings of the brandialGoogle Scholar
  19. 19.
    Latash ML, Levin MF, Scholz JP, Schöner G (2010) Motor control theories and their applications. Medicina (Kaunas, Lithuania) 46(6):382CrossRefGoogle Scholar
  20. 20.
    Lazzari S, Mottet D, Vercher JL (2009) Eye-hand coordination in rhythmical pointing. J Motor Behav 41(4):294–304CrossRefGoogle Scholar
  21. 21.
    Mäkelä V, Heimonen T, Turunen M (2014) Magnetic cursor: improving target selection in freehand pointing interfaces. In: Proceedings of PerDis. ACM, New York, pp 112–117Google Scholar
  22. 22.
    Mayer S, Wolf K, Schneegrass S, Henze N (2015) Modeling distant pointing for compensating systematic displacements. In: Proceedings of CHI 2015Google Scholar
  23. 23.
    Nancel M, Pietriga E, Chapuis O, Beaudouin-Lafon M (2015) Mid-air pointing on ultra-walls. ACM Trans Comput-Hum Interact 22(5):21:1–21:62. CrossRefGoogle Scholar
  24. 24.
    Porac C, Coren S (1976) The dominant eye. Psychol Bull 83(5):880–897CrossRefGoogle Scholar
  25. 25.
    Porac C, Coren S (1986) Sighting dominance and egocentric localization. Vis Res 26(10):1709–1713CrossRefGoogle Scholar
  26. 26.
    Roth HL, Lora AN, Heilman KM (2002) Effects of monocular viewing and eye dominance on spatial attention. Brain 125(9):2023–2035CrossRefGoogle Scholar
  27. 27.
    Ruiz J, Li Y, Lank E (2011) User-de ned motion gestures for mobile interaction. In: Proceedings of CHI, ACM, New York, CHI ’11, pp 197–206.
  28. 28.
    Teather RJ, Stuerzlinger W (2011) Pointing at 3d targets in a stereo head-tracked virtual environment. In: Proceedings of 3DUI. IEEE, pp 87–94 20Google Scholar
  29. 29.
    Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat neurosci 5 (11):1226–1235CrossRefGoogle Scholar
  30. 30.
    Wnuczko M, Kennedy JM (2011) Pivots for pointing: visuallymonitored pointing has higher arm elevations than pointing blindfolded. J Exp Psychol Hum 37(5):1485–1491. CrossRefGoogle Scholar
  31. 31.
    Wobbrock JO, Morris MR, Wilson AD (2009) User-de ned gestures for surface computing. In: Proceedings of CHI. ACM, New York, pp 1083–1092
  32. 32.
    Wobbrock JO, Findlater L, Gergle D, Higgins JJ (2011) The aligned rank transform for nonparametric factorial analyses using only anova procedures. In: Proceedings of the CHI. ACM, New York, pp 143–146

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  • Katrin Plaumann
    • 1
    Email author
  • Matthias Weing
    • 1
  • Christian Winkler
    • 1
  • Michael Müller
    • 1
  • Enrico Rukzio
    • 1
  1. 1.Insitute of Media InformaticsUlm UniversityUlmGermany

Personalised recommendations