Personal and Ubiquitous Computing

, Volume 21, Issue 3, pp 475–487 | Cite as

IoT-Lite: a lightweight semantic model for the internet of things and its use with dynamic semantics

  • Maria Bermudez-Edo
  • Tarek Elsaleh
  • Payam Barnaghi
  • Kerry Taylor
Original Article

Abstract

Over the past few years, the semantics community has developed several ontologies to describe concepts and relationships for internet of things (IoT) applications. A key problem is that most of the IoT-related semantic descriptions are not as widely adopted as expected. One of the main concerns of users and developers is that semantic techniques increase the complexity and processing time, and therefore, they are unsuitable for dynamic and responsive environments such as the IoT. To address this concern, we propose IoT-Lite, an instantiation of the semantic sensor network ontology to describe key IoT concepts allowing interoperability and discovery of sensory data in heterogeneous IoT platforms by a lightweight semantics. We propose 10 rules for good and scalable semantic model design and follow them to create IoT-Lite. We also demonstrate the scalability of IoT-Lite by providing some experimental analysis and assess IoT-Lite against another solution in terms of round trip time performance for query-response times. We have linked IoT-Lite with stream annotation ontology, to allow queries over stream data annotations, and we have also added dynamic semantics in the form of MathML annotations to IoT-Lite. Dynamic semantics allows the annotation of spatio-temporal values, reducing storage requirements and therefore the response time for queries. Dynamic semantics stores mathematical formulas to recover estimated values when actual values are missing.

Keywords

Internet of things Semantics Linked sensor data Knowledge management Dynamic semantics 

References

  1. 1.
    Baader F, Ghilardi S, Lutz C (2012) LTL over description logic axioms. ACM Trans Comput Logic (TOCL) 13(3):21MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Barnaghi P, Bermudez-Edo M, Tönjes R (2015) Challenges for quality of data in smart cities. J Data Inf Qual (JDIQ) 6(2):6Google Scholar
  3. 3.
    Bermudez-Edo M, Noguera M, Hurtado-Torres N, Hurtado MV, Garrido JL (2013) Analyzing a firms international portfolio of technological knowledge: a declarative ontology-based owl approach for patent documents. Adv Eng Inform 27(3):358–365CrossRefGoogle Scholar
  4. 4.
    Bermudez-Edo M, Elsaleh T, Barnaghi P, Taylor K (2015) Iot-lite ontology. W3C Member Submission. World Wide Web Consortium (W3C), MIT Massachusetts, USA. http://www.w3.org/Submission/iot-lite/
  5. 5.
    Bonte P, Ongenae F, Schaballie J, De Meester B, Arndt D, Dereuddre W, Bhatti J, Verstichel S, Verborgh R, Van de Walle R, et al (2015) Evaluation and optimized usage of OWL 2 reasoners in an event-based ehealth context. In: 4e OWL reasoner evaluation (ORE) workshop. pp 1–7Google Scholar
  6. 6.
    Bornstein BJ, Keating SM, Jouraku A, Hucka M (2008) LibSBML: an API library for SBML. Bioinformatics 24(6):880–881CrossRefGoogle Scholar
  7. 7.
    Botts M, Percivall G, Reed C, Davidson J (2008) OGC sensor web enablement: overview and high level architecture. In: GeoSensor networks. Springer, Heidelberg, pp 175–190. doi:10.1007/978-3-540-79996-2_10
  8. 8.
    Compton M, Barnaghi P, Bermudez L, García-Castro R, Corcho O, Cox S, Graybeal J, Hauswirth M, Henson C, Herzog A et al (2012) The SSN ontology of the W3C semantic sensor network incubator group. Web Semant Sci Serv Agents World Wide Web 17:25–32CrossRefGoogle Scholar
  9. 9.
    Cox SJ (2016) Ontology for observations and sampling features, with alignments to existing models. Semant Web 8(3):453–470. doi:10.3233/SW-160214 CrossRefGoogle Scholar
  10. 10.
    De S, Barnaghi P, Bauer M, Meissner S (2011) Service modelling for the internet of things. In: Federated conference on computer science and information systems (FedCSIS). IEEE, pp 949–955Google Scholar
  11. 11.
    De S, Elsaleh T, Barnaghi P, Meissner S (2012) An internet of things platform for real-world and digital objects. Scalable Comput Pract Exp 13(1):45–58Google Scholar
  12. 12.
    Haller S (2010) The things in the internet of things. Poster at the (IoT 2010) Tokyo, November 5, p 26Google Scholar
  13. 13.
    Henson CA, Pschorr JK, Sheth AP, Thirunarayan K (2009) Semsos: semantic sensor observation service. In: International symposium on collaborative technologies and systems CTS’09. IEEE, pp 44–53Google Scholar
  14. 14.
    Hucka M, Bergmann F, Keating SM, Schaff JC, Smith LP (2010) The systems biology markup language (sbml): language specification for level 3 version. Nature proceedingsGoogle Scholar
  15. 15.
    Janowicz K, Bröring A, Stasch C, Schade S, Everding T, Llaves A (2013) A RESTful proxy and data model for linked sensor data. Int J Digit Earth 6(3):233–254CrossRefGoogle Scholar
  16. 16.
    Kolozali S, Bermudez-Edo M, Puschmann D, Ganz F, Barnaghi P (2014) A knowledge-based approach for real-time iot data stream annotation and processing. Internet of Things (iThings), IEEE International conference on, and green computing and communications (GreenCom). IEEE and cyber, physical and social computing (CPSCom) IEEE. IEEE, pp 215–222Google Scholar
  17. 17.
    Kolozali S, Elsaleh T, Barnaghi P (2014) A validation tool for the W3C SSN ontology based sensory semantic knowledge. Terra cognita and semantic sensor, networks. p 83Google Scholar
  18. 18.
    Kolozali S, Puschmann D, Bermudez-Edo M, Barnaghi P (2016) On the effect of adaptive and non-adaptive analysis of time-series sensory data. IEEE Internet Things J. doi:10.1109/JIOT.2016.2553080 Google Scholar
  19. 19.
    López MF, Gómez-Pérez A, Sierra JP, Sierra AP (1999) Building a chemical ontology using methontology and the ontology design environment. IEEE Intell Syst 14(1):37–46CrossRefGoogle Scholar
  20. 20.
    Müller H, Cabral L, Morshed A, Shu Y (2013) From RESTful to SPARQL: a case study on generating semantic sensor data. In: SSN@ ISWC. pp 51–66Google Scholar
  21. 21.
    Nati M, Gluhak A, Abangar H, Headley W (2013) Smartcampus: a user-centric testbed for internet of things experimentation. In: 16th International symposium on wireless personal multimedia communications (WPMC). IEEE, pp 1–6Google Scholar
  22. 22.
    Nati M, Gluhak A, Domaszewicz J, Lalis S, Moessner K (2014) Lessons from smartcampus: external experimenting with user-centric internet-of-things testbed. Wirel Personal Commun 1–15. doi:10.1007/s11277-014-2223-z
  23. 23.
    OneM2M (2014) Study of abstraction and semantics enablement v.0.7.0. study of existing abstraction and semantic capability enablement technologies for consideration by OneM2M. Technical Report OneM2M (TR 0007)Google Scholar
  24. 24.
    Pautasso C (2014) Restful web services: principles, patterns, emerging technologies. In: Web services foundations. Springer, New York, pp 31–51. doi:10.1007/978-1-4614-7518-7_2
  25. 25.
    Sanchez L, Muñoz L, Galache JA, Sotres P, Santana JR, Gutierrez V, Ramdhany R, Gluhak A, Krco S, Theodoridis E et al (2014) Smartsantander: IoT experimentation over a smart city testbed. Comput Netw 61:217–238CrossRefGoogle Scholar
  26. 26.
    Sheth A, Henson C, Sahoo SS (2008) Semantic sensor web. IEEE Internet Comput 12(4):78–83CrossRefGoogle Scholar
  27. 27.
    Stocker M, Shurpali N, Taylor K, Burba G, Rönkkö M, Kolehmainen M (2015) Emrooz: a scalable database for SSN observations. In: Joint proceedings of the 1st joint international workshop on semantic sensor networks and terra cognita (SSN-TC 2015) and the 4th international workshop on ordering and reasoning (OrdRing 2015) co-located with the 14th international semantic web conference (ISWC 2015), Bethlehem, 11–12 Oct 2015, pp 1–12. http://ceur-ws.org/Vol-1488/paper-01.pdf
  28. 28.
    Taylor K, Parsons E (2015) Where is everywhere: bringing location to the web. IEEE Internet Comput 19(2):83–87CrossRefGoogle Scholar
  29. 29.
    Vermesan O, Friess P, Guillemin P, Gusmeroli S, Sundmaeker H, Bassi A, Jubert IS, Mazura M, Harrison M, Eisenhauer M et al (2011) Internet of things strategic research roadmap. Internet Things Glob Technol Soc Trends 1:9–25Google Scholar
  30. 30.
    Wang W, De S, Toenjes R, Reetz E, Moessner K (2012) A comprehensive ontology for knowledge representation in the internet of things. In: IEEE 11th international conference on trust, security and privacy in computing and communications (TrustCom). IEEE, pp 1793–1798Google Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Maria Bermudez-Edo
    • 1
  • Tarek Elsaleh
    • 2
  • Payam Barnaghi
    • 2
  • Kerry Taylor
    • 2
    • 3
  1. 1.Software Engineering DepartmentUniversity of GranadaGranadaSpain
  2. 2.Institute for Communication SystemsUniversity of SurreyGuildfordUnited Kingdom
  3. 3.Research School of Computer ScienceAustralian National UniversityCanberraAustralia

Personalised recommendations