Personal and Ubiquitous Computing

, Volume 21, Issue 2, pp 297–311 | Cite as

Context-based infomobility system for cultural heritage recommendation: Tourist Assistant—TAIS

  • Alexander V. Smirnov
  • Alexey M. Kashevnik
  • Andrew Ponomarev
Original Article

Abstract

The paper presents an infomobility system (Tourist Assistant—TAIS) for supporting tourists in a region. The system solves both main tasks related to the infomobility concept: user actions analysis, preferences revealing, cultural heritage recommendation based on the preferences and current situation in the region, and provides the user with possible transportation means to reach the corresponding cultural heritage. Multimedia information about the cultural heritage includes: text description and images, and videos extracted from accessible Internet sources (such as Wikipedia, Wikivoyage, Panoramio and YouTube). The system consists of a set of services joined together by a smart space that provides possibilities to organize semantic-based information exchange between these services using ontology-based approach. Services share information for joint solving the tourist’s task with the smart space. This information forms cultural space that is a model of physical space where the tourist is. The list of cultural heritage provided to the tourist is ordered by the special recommendation service that implements the ranking based on the collaborative filtering technique. Recommendations are based on ratings set by the tourists that use the system. To provide the tourist with different transportation means, the special transportation service has been developed. This service calls a taxi, finds ridesharing possibilities or calculates multimodal route by public transport based on the tourist preferences. The paper describes the service-based system architecture, services development, their ontologies, and implementation and evaluation. The prototype of the developed system is accessible for download in the Google Play market for Android device users.

Keywords

Infomobility Smart spaces Context Cultural heritage Services Recommendations 

Notes

Acknowledgements

The presented results are part of the research carried out within the project funded by Grants # 16-29-12866, 16-29-04349, 16-07-00462 of the Russian Foundation for Basic Research. The work has been partially financially supported by Government of Russian Federation, Grant 074-U01.

References

  1. 1.
    Apple reports record first quarter results (2016) Apple Official Website. https://www.apple.com/pr/library/2016/01/26Apple-Reports-Record-First-Quarter-Results.html. Accesses 07 Oct 2016
  2. 2.
    Vincent J (2015) Android is now used by 1.4 billion people. The Verge. http://www.theverge.com/2015/9/29/9409071/google-android-stats-users-downloads-sales. Accesses 07 Oct 2016
  3. 3.
    Civantos A, Brown M, Coughlan T, Ainsworth S, Lorenz K (2016) Using mobile media creation to structure museum interpretation with professional vision. Pers Ubiquitous Comput J 20(1):23–36. doi:10.1007/s00779-015-0895-3 CrossRefGoogle Scholar
  4. 4.
    Ericsson mobility report (2015) Ericsson Official Website. http://www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility-report-nov-2015.pdf. Accesses 07 Oct 2016
  5. 5.
    Borras J, Moreno A, Valls A (2014) Intelligent tourism recommender systems: a survey. Expert Syst Appl J 41(16):7370–7389. doi:10.1016/j.eswa.2014.06.007 CrossRefGoogle Scholar
  6. 6.
    Karanasios S, Burgess S, Sellitto C (2012) A classification of mobile tourism applications. In: Global hospitality and tourism management technologies. IGI GlobalGoogle Scholar
  7. 7.
    Chianese A, Marulli F, Piccialli F, Benedusi P, Jung JE (2017) An associative engines based approach supporting collaborative analytics in the Internet of cultural things. Future Gener Comput Syst J 66:187–198. doi:10.1016/j.future.2016.04.015 CrossRefGoogle Scholar
  8. 8.
    Wagner S, Franke-Opitz T, Schwartze C, Bach F (2013) Mobile travel app guide: edition 2013 powered by ITB. Pixell Online Marketing GMBH. http://www.itb-berlin.de/media/itb/itb_media/itb_pdf/publikationen/MTAG_2013.pdf. Accesses 07 Oct 2016
  9. 9.
    Korzun D, Kashevnik A, Balandin S, Smirnov A (2015) The Smart-M3 platform: experience of smart space application development for internet of things. In: Internet of things, smart spaces, and next generation networks and systems. Springer, Berlin, LNCS 9247, pp 56–67. doi: 10.1007/978-3-319-23126-6_6
  10. 10.
    Dey A, Salber D, Abowd G (2001) A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum Comput Interact J 16(2):97–199. doi:10.1207/S15327051HCI16234_02 CrossRefGoogle Scholar
  11. 11.
    Honkola J, Laine H, Brown R, Tyrkko O (2010) Smart-M3. In: Proceedings of IEEE symposium on computers and communications. IEEE Computer Society, pp 1041–1046Google Scholar
  12. 12.
    Smirnov A, Kashevnik A, Shilov N, Teslya N, Shabaev A (2104) Mobile application for guiding tourist activities: tourist assistant—TAIS. In: Proceedings of the 16th conference of open innovations association FRUCT. ITMO university. pp 94–100. doi:10.1109/FRUCT.2014.7000931
  13. 13.
    Ambrosino G, Boero M, Nelson JD, Romanazzo M (2012) Infomobility systems and sustainable transport services. ENEA Italian National Agency for New Technologies, Energy Sustain Econ Dev, p 336Google Scholar
  14. 14.
    Emmanouilidis C, Koutsiamanis R, Tasidou A (2013) Mobile guides: taxonomy of architectures, context awareness, technologies and applications. Netw Comput Appl J 36:103–125. doi:10.1016/j.jnca.2012.04.007 CrossRefGoogle Scholar
  15. 15.
    Smirnov A, Shilov N, Kashevnik A, Teslya N, Shchekotov M (2013) Intelligent tourist guiding service based on Smart-M3 Platform. In: Proceedings of 13th conference of open innovations association FRUCT. pp 121–131Google Scholar
  16. 16.
    Gavalas D, Konstantopoulos C, Mastakas K, Pantziou G (2014) Mobile recommender systems in tourism. Netw Comput Appl 39:319–333. doi:10.1016/j.jnca.2013.04.006 CrossRefGoogle Scholar
  17. 17.
    Ingraham N (2012) European Union proposal would significantly reduce mobile roaming costs for EU citizens. http://www.theverge.com, http://www.theverge.com/2012/2/13/2794862/european-union-roaming-charges-reduction. Accesses 07 Oct 2016
  18. 18.
    Anacleto R, Figueiredo L, Almeida A, Novais P (2014) Mobile application to provide personalized sightseeing tours. Netw Comput Appl J 41:56–64. doi:10.1016/j.jnca.2013.10.005 CrossRefGoogle Scholar
  19. 19.
    Setten M, Pokraev S, Koolwaaij J (2004) Context-aware recommendations in the mobile tourist application COMPASS. In: Adaptive hypermedia and adaptive web-based systems. LNCS 3137, pp 235–244. doi:10.1007/978-3-540-27780-4_27
  20. 20.
    Kramer R, Modsching M, Hagen K (2008) Development and evaluation of a context-driven, mobile tourist guide. Pervasive Comput Commun J 3(4):378–399. doi:10.1108/17427370710863121 CrossRefGoogle Scholar
  21. 21.
    Al-Rayes K, Sevkli A, Al-Moaiqel H, Al-Ajlan H, Al-Salem K, Al- Fantoukh N (2011) A mobile tourist guide for trip planning. IEEE Multidiscip Eng Educ Mag 6(4):1–6Google Scholar
  22. 22.
    Vdovenko A, Lukovnikova A, Marchenkov S, Sidorcheva N, Polyakov S, Korzun D (2012) World around me client for windows phone devices. In: Proceeding of 11th FRUCT Conference, pp 206–208Google Scholar
  23. 23.
    Luyten K, Coninx K (2004) ImogI: take control over a context aware electronic mobile guide for museums. HCI in Mobile Guides, University of StrathclydeGoogle Scholar
  24. 24.
    Garcia O, Alonso RS, Guevara F, Sancho D, Sánchez M, Bajo J (2011) ARTIZT: applying ambient intelligence to a museum guide scenario. In: Ambient intelligence—software and applications. Springer, Berlin, pp 173–180. doi:10.1007/978-3-642-19937-0_22
  25. 25.
    Chianese A, Piccialli F, Valente I (2015) Smart environments and Cultural Heritage: a novel approach to create intelligent cultural spaces. J Locat Based Serv 9(3):209–234. doi:10.1080/17489725.2015.1099752 CrossRefGoogle Scholar
  26. 26.
    Angelaccio M, Basili A, Buttarazzi B, Liguori W (2012) Smart and mobile access to Cultural Heritage resources: a case study on ancient italian renaissance villas. In: 2012 IEEE 21st international workshop on enabling technologies: infrastructure for collaborative enterprises (WETICE), pp 310–314. doi:10.1109/WETICE.2012.36
  27. 27.
    Teslya N (2014) Web mapping service for mobile tourist guide. In: Proceedings of the 15th conference of open innovations association FRUCT. pp 135–143. doi:10.1109/FRUCT.2014.6872438
  28. 28.
    Smirnov A, Kashevnik A, Ponomarev A, Teslya N, Shchekotov M, Balandin S (2014) Smart space-based tourist recommendation system: application for mobile devices. In: Internet of things, smart spaces, and next generation networks and systems, Springer, LNCS 8638, pp 40–51. doi:10.1007/978-3-319-10353-2_4
  29. 29.
    Smirnov A, Shilov N, Kashevnik A, Teslya N, Laizane S (2013) Smart space-based ridesharing service in e-Tourism application for Karelia region accessibility: ontology-based approach and implementation. In Proceedings of 8th International Joint conference on Software Technologies, pp 591–598Google Scholar
  30. 30.
    Balabanovic M, Shoham Y (1997) Fab: content-based, collaborative recommendation. Commun ACM 40(3):66–72. doi:10.1145/245108.245124 CrossRefGoogle Scholar
  31. 31.
    Adomavicius G, Mobasher B, Ricci F, Tuzhilin A (2011) Context-aware recommender systems. AI Magazine 32(3):67–80. doi:10.1609/aimag.v32i3.2364 Google Scholar
  32. 32.
    Adomavicius G, Sankaranarayanan R, Sen S, Tuzhilin A (2005) Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans Inf Syst 23(1):103–145. doi:10.1145/1055709.1055714 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Alexander V. Smirnov
    • 1
    • 2
  • Alexey M. Kashevnik
    • 1
    • 2
  • Andrew Ponomarev
    • 1
    • 2
  1. 1.SPIIRASSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations