Personal and Ubiquitous Computing

, Volume 19, Issue 3–4, pp 709–721 | Cite as

Urban traffic analysis through multi-modal sensing

  • Mikko Perttunen
  • Vassilis Kostakos
  • Jukka Riekki
  • Timo Ojala
Original Article

Abstract

This paper makes contributions toward adopting a systemic view of city-wide ubiquitous systems. Here, we present methods and techniques for combining multiple sensing modalities to measure and model traffic patterns in urban environments. We show how noise in one modality can be reduced by considering another more reliable modality and how two modalities can be combined. While much work in the literature deals with simulated data or small data sets, our work focuses on analyzing data from a permanent data collection infrastructure in a downtown area. We present results using a 3-week data set containing data of two modalities: inductive loop traffic detectors and Bluetooth scanners.

Keywords

Bluetooth Inductive loop Detection Origin–destination 

References

  1. 1.
    Balazinska M, Castro P (2003) Characterizing mobility and network usage in a corporate wireless local-area network. ACM Press, New York, pp 303–316Google Scholar
  2. 2.
    Barcelo J, Montero L, Marques L, Carmona C (2010) Travel time forecasting and dynamic od estimation in freeways based on bluetooth traffic monitoring. Transp Res Rec 2175(1):19–27CrossRefGoogle Scholar
  3. 3.
    Caceres N, Wideberg JP, Benitez FG (2007) Deriving origin–destination data from a mobile phone network. Eng Technol 1(1):15–26Google Scholar
  4. 4.
    Chaintreau A, Hui P, Crowcroft J, Diot C, Gass R, Scott J (2007) Impact of human mobility on opportunistic forwarding algorithms. IEEE Trans Mob Comput 6(6):606–620CrossRefGoogle Scholar
  5. 5.
    Day CM, Haseman R, Premachandra H, Brennan TM, Wasson JS, Sturdevant JR, Bullock DM (2010) Visualization and assessment of arterial progression quality using high resolution signal event data and measured travel time. Transp Res Rec 10–0039(2192):1–30Google Scholar
  6. 6.
    Eagle N, Pentland A (2006) Reality mining: sensing complex social systems. Pers Ubiquitous Comput 10:255–268CrossRefGoogle Scholar
  7. 7.
    Girardin F, Calabrese F, Fiore F, Ratti C, Blat J (2008) Digital footprinting: uncovering tourists with user-generated content. Pervasive Comput IEEE 7(4):36–43CrossRefGoogle Scholar
  8. 8.
    Gonzalez MC, Hidalgo CA, Barabasi A-L (2008) Understanding individual human mobility patterns. Nature 453(7196):779–782CrossRefGoogle Scholar
  9. 9.
    Haghani A, Hamedi M, Sadabadi KF, Young S, Tarnoff P (2009) Data collection of freeway travel time ground truth with bluetooth sensors. Transp Res Rec 2160(–1):60–68Google Scholar
  10. 10.
    H.D. R (1994) ITE manual of transportation engineering studies. Prentice Hall, Englewood CliffsGoogle Scholar
  11. 11.
    O. J.C. (1976) Sample size determination for travel time and delay studies. Traffic Eng. 46(9)Google Scholar
  12. 12.
    Kostakos V, Camacho T, Mantero C (2013) Towards proximity-based passenger sensing on public transport buses. Pers Ubiquitous Comput, pp. 1–10Google Scholar
  13. 13.
    Kostakos V, Nicolai T, Yoneki E, O’Neill E, Kenn H, Crowcroft J (2009) Understanding and measuring the urban pervasive infrastructure. Pers Ubiquitous Comput 13:355–364CrossRefGoogle Scholar
  14. 14.
    Krumm J (2010) Where will they turn: predicting turn proportions at intersections. Pers Ubiquitous Comput 14:591–599CrossRefGoogle Scholar
  15. 15.
    Lammer S, Gehlsen B, Helbing D (2006) Scaling laws in the spatial structure of urban road networks. Phys A Stat Mech Appl 363(1):89–95CrossRefGoogle Scholar
  16. 16.
    Liu L, Andris C, Ratti C (2010) Uncovering cabdrivers’ behavior patterns from their digital traces. Comput Environ Urban Syst 34(6):541–548CrossRefGoogle Scholar
  17. 17.
    Lu Y, Liu Y (2012) Pervasive location acquisition technologies: opportunities and challenges for geospatial studies. Comput Environ Urban Syst 36(2):105–108CrossRefGoogle Scholar
  18. 18.
    Martchouk M, Street NC, Suite NE (2010) Analysis of freeway travel time variability using bluetooth detection. J Transp Eng 2051(July):1–30Google Scholar
  19. 19.
    McNett M, Voelker GM (2005) Access and mobility of wireless PDA users. ACM SIGMOBILE Mob Comput Commun Rev 9(2):40CrossRefGoogle Scholar
  20. 20.
    Nicolai T, Kenn H (2007) About the relationship between people and discoverable bluetooth devices in urban environments. In: Mobility. ACM, New York, pp 72–78Google Scholar
  21. 21.
    Nicolai T, Yoneki E, Behrens N, Kenn H (2006) Exploring social context with the wireless rope, vol 4277. Springer, BerlinGoogle Scholar
  22. 22.
    O’Neill E, Kostakos V, Kindberg T, Schieck AF gen, Penn, Fraser ADS, Jones T (2006) Instrumenting the city: developing methods for observing and understanding the digital cityscape. In: Ubicomp, vol 4206. Springer, pp 315–332Google Scholar
  23. 23.
    Quayle S, Koonce P (2010) Arterial performance measures using MAC Readers-Portland’s experience. Kittelson & Associates, Inc., PortlandGoogle Scholar
  24. 24.
    Rattenbury T, Good N, Naaman M (2007) Towards automatic extraction of event and place semantics from flickr tags. In: ACM SIGIR conference on research and development in information retrieval, SIGIR ’07, New York, NY, USA, ACM, pp 103–110Google Scholar
  25. 25.
    Versichele M, Neutens T, Delafontaine M, de Weghe NV (2012) The use of bluetooth for analysing spatiotemporal dynamics of human movement at mass events: a case study of the ghent festivities. Appl Geogr 32(2):208–220CrossRefGoogle Scholar
  26. 26.
    Working H (1960) Notes on the correlation of first differences of averages in a random chain. Econometrica 28(4):916–918MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhou X, Mahmassani H (2006) Dynamic origin-destination demand estimation using automatic vehicle identification data. Intell Transp Syst IEEE Trans 7(1):105–114CrossRefGoogle Scholar
  28. 28.
    Ziebart BD, Maas AL, Dey AK, Bagnell JA (2008) Navigate like a cabbie: probabilistic reasoning from observed context-aware behavior. In: Ubicomp. ACM, New York, pp 322–331Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Mikko Perttunen
    • 1
  • Vassilis Kostakos
    • 1
  • Jukka Riekki
    • 1
  • Timo Ojala
    • 1
  1. 1.University of OuluOuluFinland

Personalised recommendations