Personal and Ubiquitous Computing

, Volume 18, Issue 8, pp 2003–2023

Managing obesity through mobile phone applications: a state-of-the-art review from a user-centred design perspective

Original Article


Evidence has shown that the trend of increasing obesity rates has continued in the last decade. Mobile phone applications, benefiting from their ubiquity, have been increasingly used to address this issue. In order to increase the applications’ acceptance and success, a design and development process that focuses on users, such as user-centred design, is necessary. This paper reviews reported studies that concern the design and development of mobile phone applications to prevent obesity, and analyses them from a user-centred design perspective. Based on the review results, strengths and weaknesses of the existing studies were identified. Identified strengths included: evidence of the inclusion of multidisciplinary skills and perspectives; user involvement in studies; and the adoption of iterative design practices. Weaknesses included the lack of specificity in the selection of end-users and inconsistent evaluation protocols. The review was concluded by outlining issues and research areas that need to be addressed in the future, including: greater understanding of the effectiveness of sharing data between peers, privacy, and guidelines for designing for behavioural change through mobile phone applications.


Obesity User-centred design Mobile phone Ubiquitous 


  1. 1.
    Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, Singh GM, Gutierrez HR, Lu Y, Bahalim AN, Farzadfar F, Riley LM, Ezzati M (2011) National, regional and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377(8765):557–567. doi:10.1016/S0140-6736(10)62037-5 CrossRefGoogle Scholar
  2. 2.
    Ogden CL, Caroll MD, Kit BK, Flegal KM (2012) Prevalence of obesity in the United States 2009–2010. National Centre for Health Statistic Data Brief, 82Google Scholar
  3. 3.
    Branca F, Haik N, Lobstein T (2007) The challenge of obesity in the WHO European Region and the strategies for response: summary. WHO, CopenhagenGoogle Scholar
  4. 4.
    Fry J, Finley W (2005) The prevalence and costs of obesity in the EU. Proc Nutr Soc 64(3):359–362. doi:10.1079/PNS2005443 CrossRefGoogle Scholar
  5. 5.
    Finkelstein EA, Fiebelkorn IC, Wang G (2003) National medical spending attributable to overweight and obesity: how much and who’s paying? Health Aff 3:219–226. doi:10.1377/hlthaff.w3.219 Google Scholar
  6. 6.
    Nagai M, Kuriyama S, Kakizaki M, Ohmori-Matsuda K, Sone T, Hozawa A, Kawado M, Hashimoto S, Tsuii I (2012) Impact of obesity, overweight and underweight on life expectancy and lifetime medical expenditures: the Ohsaki Cohort Study. BMJ Open 2(3). doi:10.1136/bmjopen-2012-000940
  7. 7.
    Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M (2011) Health and economic burden of the projected obesity trends in the USA and UK. Lancet 378(9739):815–825. doi:10.1016/S0140-6736(11)60814-3 CrossRefGoogle Scholar
  8. 8.
    Ollberding NJ, Wolf RL, Contento I (2010) Food label use and its relation to dietary intake among US adults. J Am Diet Assoc 100(8):1233–1237. doi:10.1016/j.jada.2010.05.007 CrossRefGoogle Scholar
  9. 9.
    Mytton OT (2012) Taxing unhealthy food and drinks to improve health. Br Med J 344:e2931. doi:10.1136/bmj.e2931 CrossRefGoogle Scholar
  10. 10.
    Klasnja P, Pratt W (2012) Healthcare in the pocket: mapping the space of mobile-phone health interventions. J Biomed Inform 45:184–198. doi:10.1016/j.jbi.2011.08.017 CrossRefGoogle Scholar
  11. 11.
    Lau PWC, Lau EY, Wong DP, Ransdell L (2011) A systematic review of information and communication technology-based interventions for promoting physical activity behavior change in children and adolescents. J Med Intern Res 13(3). doi:10.2196/jmir.1533
  12. 12.
    Kennedy CM., Powell J, Payne TH, Ainsworth J, Boyd A, Buchan I (2012) Active assistance technology for health-related behavior change: an interdisciplinary review. J Med Intern Res 14(3). doi:10.2196/jmir.1893
  13. 13.
    Damodaran L (1996) User involvement in the system design process—a practical guide for users. Behav Inf Technol 15(6):364–377CrossRefGoogle Scholar
  14. 14.
    Norman DA, Draper SW (1986) User-centred system design: new perspective on human–computer interaction. Lawrence Earlbaum Associate, HillsdaleGoogle Scholar
  15. 15.
    Preece J, Rogers Y, Sharp H, Benyon D, Holland S, Carey T (1994) Human computer interaction. Pearson Education Limited, EnglandGoogle Scholar
  16. 16.
    Maguire M, Bevan N (2002) User requirements analysis: a review of supporting methods. In: Proceedings of IFIP 17th World Computer CongressGoogle Scholar
  17. 17.
    Maguire M (2001) Methods to support human-centred design. Int J Hum Comput Stud 55:587–634CrossRefMATHGoogle Scholar
  18. 18.
    Vredenburg K, Isensee S, Righi C (2002) User-centred design: an integrated approach. Prentice-Hall, New JerseyGoogle Scholar
  19. 19.
    Hartson R, Pyla P (2012) The UX book: process and guidelines for ensuring a quality user experience. Elsevier, WalthamGoogle Scholar
  20. 20.
    Iglesias J, Cano J, Bernardos AM, Casar JR (2011a) A ubiquitous cavity-monitor to prevent sedentaries. In Proceedings of IEEE international conference on pervasive computing and communicationsGoogle Scholar
  21. 21.
    Iglesias J, Bernardos AM, Tarrio P, Casar JR, Martin H (2011b) Design and validation of a light inference system to support embedded context reasoning. Pers Ubiquit ComputGoogle Scholar
  22. 22.
    Fialho ATS, van den Heuvel H, Shahab Q, Liu Q, Li L, Saini P, Lacroix J, Markopoulos P (2009a) ActiveShare: sharing challenges to increase physical activities. In: Proceedings of the 27th international conference on human factors in computing systems. doi:10.1145/1520340.1520633
  23. 23.
    Fialho A, van den Heuvel H, Shahab Q, Liu Q, Li L, Saini P, Lacroix J, Markopoulos P (2009b) Virtual challenges: a social interaction approach to increasing physical activity. In: Wouters IHC, Tieben R, Kimman FFP, Offermans SAM, Nagtzaam HAH (eds) Flirting with the future: proceedings of the 5th student interaction design conferenceGoogle Scholar
  24. 24.
    Arteaga SM, Kudeki M, Woodworth A (2009) Combating obesity trends in teenagers through persuasive mobile technology. SIGACCESS Access Comput 94:17–25. doi:10.1145/1595061.1595064 CrossRefGoogle Scholar
  25. 25.
    Arteaga SM, Kudeki M, Woodworth A, Kurniawan S (2010) Mobile system to motivate teenagers’ physical activity. In: Proceedings of the 9th international conference on interaction design and children. doi:10.1145/1810543.1810545
  26. 26.
    Arteaga SM (2010) Persuasive mobile exercise companion for teenagers with weight management issues. SIGACCESS Access Comput 96:4–10. doi:10.1145/1731849.1731850 CrossRefGoogle Scholar
  27. 27.
    Denning T, Andrew A, Chaudhri R, Hartung C, Lester J, Borriello G, Duncan G (2009) BALANCE: towards a usable pervasive wellness application with accurate activity inference. In: Proceedings of the 10th workshop on mobile computing systems and applications. doi:10.1145/1514411.1514416
  28. 28.
    Andrew A, Denning T, Borriello G (2009) BALANCE: An engaging interface for long term wellness. In: Proceedings of the computer and human interactions 2009 conferenceGoogle Scholar
  29. 29.
    Hughes DC, Andrew A, Denning T, Hurvitz P, Lester J, Beresford S, Borriello G, Bruemmer B, Moudon AV, Duncan GE (2010) BALANCE (Bioengineering Approaches for Lifestyle Activity and Nutrition Continuous Engagement): developing new technology for monitoring energy balance in real time. J Diabetes Sci Technol 4(2):429–434CrossRefGoogle Scholar
  30. 30.
    Toscos T, Faber A, An S, Gandhi MF (2006) Chick clique: persuasive technology to motivate teenage girls to exercise. In: Proceedings of the computer and human interaction 2006 conference. doi:10.1145/1125451.1125805
  31. 31.
    Toscos T, Faber A, Connelly K, Upoma AM (2008) Encouraging physical activity in teens: can technology help reduce barriers to physical activity in adolescent girls? In: Proceedings of pervasive computing technologies for healthcare. doi:
  32. 32.
    Clark D, Edmonds C, Moore A, Harlow J, Allen K (2012) Android application development to promote physical activity in adolescents. In: Proceedings of 2012 international conference on the collaboration technologies and systems (CTS). doi:10.1109/CTS.2012.6261106
  33. 33.
    Allen K, Harlow J, Cook E, McCrickard DS, Winchester WW III, Zoellner J, Estabrooks P (2012) Understanding perceptions and experiences of cellular phone usage in low socioeconomic youth. In: Proceedings of the 33rd annual meeting and scientific sessions of the society for behavioral medicineGoogle Scholar
  34. 34.
    Schiel R, Kaps A, Bieber G (2012) Electronic health technology for the assessment of physical activity and eating habits in children and adolescents with overweight and obesity IDA. Appetite 58(2):432–437. doi:10.1111/j.1744-9987.2010.00903 CrossRefGoogle Scholar
  35. 35.
    Bieber G, Voskamp J, Urban B (2009) Activity recognition for everyday life on mobile phones. In: Proceedings of the 5th international on conference universal access in human–computer interaction. doi:10.1007/978-3-642-02710-9_32
  36. 36.
    Shang J, Sundara-Rajan K, Lindsey L, Mamishev A, Johnson E, Teredesei A, Kristal A (2011a) A pervasive dietary data recording system. In: Proceedings of IEEE international conference on pervasive computing and communications. doi:10.1109/PERCOMW.2011.5766890
  37. 37.
    Shang J, Sundara-Rajan K, Lindsey L, Mamishev A, Johnson E, Teredesei A, Kristal A (2011b) A mobile structured light system for food volume evaluation. In: Proceedings of IEEE international conference on computer vision workshops. doi:10.1109/ICCVW.2011.6130229
  38. 38.
    Shang J, Pepin E, Johnson E, Hazel D, Teredesai A, Kristal A, Mamishev A (2012). Dietary intake assessment using integrated sensors and software. In: Proceedings of SPIE 8304 multimedia on mobile devices. doi:10.1117/12.907769
  39. 39.
    Kong F, Tan J (2012) DietCam: automatic dietary assessment with mobile camera phones. Pervasive Mob Comput 8:147–163. doi:10.1016/j.pmcj.2011.07.003 CrossRefGoogle Scholar
  40. 40.
    Clawson J, Patel N, Starner T (2010) Dancing in the Streets: The design and evaluation of a wearable health game. In: Proceedings of the 2010 international symposium on wearable computers. doi:10.1109/ISWC.2010.5665864
  41. 41.
    Ho TC, Chen X (2009) ExerTrek: a portable handheld exercise monitoring, tracking and recommendation system. In: Proceedings of the 11th international conference on e-health networking, applications and services. doi:10.1109/HEALTH.2009.5406194
  42. 42.
    Laikari A (2009) Exergaming—gaming for health: a bridge between real world and virtual communities. In: Proceedings of the 13th IEEE international symposium on consumer electronics. doi:10.1109/ISCE.2009.5157004
  43. 43.
    Vaatanen A, Leikas J (2009) Human-centred design and exercise games: users’ experiences of a fitness adventure prototype. In: Kankaanranta M, Neittaanmaki P (eds) Design and use of serious games. Springer, DordrechtGoogle Scholar
  44. 44.
    Chuah M, Sample S (2011) Fitness Tour: a mobile application for combating obesity. In: Proceedings of the first ACM MobiHoc workshop on pervasive wireless healthcare. doi:10.1145/2007036.2007048
  45. 45.
    Kitamura K, Yamasaki T, Aizawa K (2009) Food image analysis by local image feature. IEICE Tech Report 108(425):167–172Google Scholar
  46. 46.
    Aizawa K, de Silva GC, Ogawa M, Sato Y (2010) Food log by snapping and processing images. In: Proceedings of international conference on virtual systems and multimedia (VSMM). doi:10.1109/VSMM.2010.5665963
  47. 47.
    Chang T (2012) Food fight: A social diet network mobile application. Master Thesis, University of CaliforniaGoogle Scholar
  48. 48.
    Wylie CG, Coulton P (2008) Mobile exergaming. In: Proceedings of 2008 international conference on advances in computer entertainment technology. doi:10.1145/1501750.1501830
  49. 49.
    Wylie CG, Coulton P (2009) Mobile persuasive exergaming. In: Proceedings of international IEEE consumer electronics society’s games innovations conference. doi:10.1109/ICEGIC.2009.5293582
  50. 50.
    Gao C, Fanyu K, Tan J (2009) Health aware: tackling obesity with health aware smart phone systems. In: Proceedings of the 2009 IEEE international conference on robotics and biomimetics. doi:10.1007/s11036-007-0014-4
  51. 51.
    Consolvo S, Everitt K, Smith I, Landay JA (2006) Design requirements for technologies that encourage physical activity. In: Proceedings of CHI 2006. doi:10.1145/1124772.1124840
  52. 52.
    Consolvo S, Harrison B, Smith I, Chen M, Everitt K, Froelich J, Landay JA (2007) Conducting in situ evaluations for and with ubiquitous computing technologies. Int J Hum Comput Interact 22(1):107–122. doi:10.1080/10447310709336957 Google Scholar
  53. 53.
    Järvinen P, Järvinen T.H, Lähteenmäki L, Södergård C (2008) HyperFit: hybrid media in personal nutrition and exercise management. In: Proceedings of second international conference on pervasive computing technologies for healthcare. doi:10.4108/ICST.PERVASIVEHEALTH2008.2555
  54. 54.
    Macvean A, Robertson J (2012) iFitQuest: a school based study of a mobile location-aware exergame for adolescents. In: Proceedings of the 14th international conference on human–computer interaction with mobile devices and services. doi:10.1145/2371574.2371630
  55. 55.
    Macvean A (2012) Developing adaptive exergames for adolescent children. In: Proceedings of the 11th international conference on interaction design and children. doi:10.1145/2307096.2307162
  56. 56.
    Li I, Key AK, Forlizzi J (2012) Using context to reveal factors that affect physical activity. J ACM Trans Comput Hum Interact 19(1). doi:10.1145/2147783.2147790
  57. 57.
    Ahtinen A, Huuskonen P, Hakkila J (2010) Let’s all get up and walk to the north pole: design and evaluation of a mobile wellness application. In: Proceedings of the 6th nordic conference on human–computer interaction. doi:10.1145/1868914.1868920
  58. 58.
    Emken BA, Li M, Thatte G, Annavaram M, Mitra U, Narayanan S, Sprujit-Metz D (2012) Recognition of physical activities in overweight Hispanic youth using KNOWME networks. J Phys Act Health 9(3):432–441Google Scholar
  59. 59.
    Chittaro L, Sioni R (2012) Turning the classic snake mobile game into a location-based exergame that encourages walking. In: Proceedings of the 7th international conference on persuasive technology: design for health and safety. doi:10.1007/978-3-642-31037-9_4
  60. 60.
    Gorgu L, O’Hare GMP, O’Grady MJ (2009) Towards mobile collaborative exergaming. In: Proceedings of the second international conference on advances in human-oriented and personalized mechanisms, technologies, and services. doi:10.1109/CENTRIC.2009.16.61
  61. 61.
    Bentley F, Tollmar K, Viedma C (2012) Personal health mahsups: mining significant observations from wellbeing data and context. In Proceedings of CHI 2012Google Scholar
  62. 62.
    Tollmar K, Bentley F, Viedma C (2012) Mobile health mashups: making sense of multiple streams of wellbeing and contextual data for presentation on a mobile device. In: Proceedings of 6th international conference on pervasive computing technologies for healthcare and workshops. doi:10.4108/icst.pervasivehealth.2012.248698
  63. 63.
    Khan DU, Ananthanarayan S, Le A, Schaefbauer CL, Siek KA (2012) Designing mobile snack application for low socioeconomic status families. In: Proceedings of the 6th international conference on pervasive computing technologies for health care. doi:10.4108/icst.pervasivehealth.2012.248692
  64. 64.
    Buttusi F, Chittaro L (2010) Smarter phones for healthier lifestyle: an adaptive fitness game. Pervasive Comput 9(4):51–57. doi:10.1109/MPRV.2010.52 CrossRefGoogle Scholar
  65. 65.
    Buttusi F, Chittaro L, Nadalutti, D (2006) Bringing mobile guides and fitness activities together: a solution based on an embodied virtual trainer. In: Proceedings of the 8th conference on human–computer interaction with mobile devices and services. doi:10.1145/1152215.1152222
  66. 66.
    Buttusi F, Chittaro L (2008) MOPET: a context-aware and user-adaptive wearable system for fitness training. Artif Intell Med 42(2):153–163. doi:10.1016/j.artmed.2007.11.004 CrossRefGoogle Scholar
  67. 67.
    Lin Y, Jessurun J, de Vries B, Timmermans H (2011a) Motivate: context aware mobile application for activity recommendation. In: Proceedings of the 2nd international conference on ambient intelligence. doi:10.1007/978-3-642-25167-2_27
  68. 68.
    Lin Y, Jessurun J, de Vries B, Timmermans H (2011b) Motivate: towards context aware recommendation mobile system for healthy living. In: Proceedings of the 5th international conference on pervasive computing technologies for healthcare and workshops. doi:10.4108/icst.pervasivehealth.2011.246030
  69. 69.
    Bielik P, Tomlein M, Kratky S, Barla M, Bielikova M (2012) Move2Play: an innovative approach to encouraging people to be more physically active. In: Proceedings of the 2nd ACM SIGHIT international health informatics symposium. doi:10.1145/2110363.2110374
  70. 70.
    Fukuoka Y, Lindgren T, Jong S (2012) Qualitative exploration of the acceptability of a mobile phone and pedometer-based physical activity program in a diverse sample of sedentary women. Public Health Nurs 29(3):232–240. doi:10.1111/j.1525-1446.2011.00997 CrossRefGoogle Scholar
  71. 71.
    Fukuoka Y, Komatsu J, Suarez L, Vittinghoff E, Haskell W, Noorishad T, Pham K (2011) The mPED randomised controlled clinical trial: applying mobile persuasive technologies to increase physical activity in sedentary women protocol. BMC Public Health 11:933. doi:10.1186/1471-2458-11-933 CrossRefGoogle Scholar
  72. 72.
    Fujiki Y, Starren J, Kazakos K, Pavlidis I, Puri C, Levine J (2007) NEAT-o-games: ubiquitous activity-based gaming. In: Proceedings of CHI 2007. doi:10.1145/1240866.1241009
  73. 73.
    Fujiki Y, Kazakos K, Puri C, Buddharaju P, Pavlidia I, Levine J (2008) NEAT-o-games: blending physical activity and fun in the daily routine. ACM Comput Entertain. 6(1). doi:10.1145/1371216.1371224
  74. 74.
    Kazakos K, Fujiki Y, Pavlidis I, Bourlai T, Levine J (2008) NEAT-o-games: novel mobile gaming versus modern sedentary lifestyle. In: Proceedings of MobileHCI 2008. doi:10.1145/1409240.1409333
  75. 75.
    Grimes A, Kantroo V, Grinter RE (2010) Let’s play!: mobile health games for adults. In: Proceedings of the 12th ACM international conference on ubiquitous computing. doi:10.1145/1864349.1864370
  76. 76.
    Grimes A, Grinter R (2007) Designing persuasion: health technology for low-income african american communities. In: Proceedings of the 2nd international conference on persuasive technologyGoogle Scholar
  77. 77.
    van Gils M, Parkka J, Lappalainen R, Ahonen A, Maukonen A, Tuomisto T (2001) Feasibility and user acceptance of a personal weight management system based on ubiquitous computing. In: Proceedings of the 23rd annual IEEE international conference on engineering in medicine and biology society. doi:10.1109/IEMBS.2001.1019626
  78. 78.
    Parkka J, van Gils M, Tuomisto T (2000) A wireless wellness monitor for personal weight management. In Proceedings of 2000 IEEE engineering in medicine and biology societyGoogle Scholar
  79. 79.
    Lee G, Raab F, Tsai C, Patrick K, Griswold WG (2007) PmEB: a mobile phone application for monitoring caloric balance. In: Proceedings of CHI 2006. doi:10.1007/s11036-007-0014-4
  80. 80.
    Tsai CC, Lee G, Raab F, Norman GJ, Sohn T, Griswold WG, Patrick K (2007) Usability and feasibility of PmEB: a mobile phone application for monitoring real time caloric balance. Mob Netw Appl 12:173–184. doi:10.1007/s11036-007-0014-4 CrossRefGoogle Scholar
  81. 81.
    Berkovsky S, Freyne J, Coombe M (2012) Physical activity motivating games: be active and get your own reward. J ACM Trans Comput Hum Interact 19(4). doi:10.1145/2395131.2395139
  82. 82.
    Rodrigues JJ, Lopes IM, Silva BM, Torre ID (2012) A new mobile ubiquitous computing application to control obesity: SapoFit. Inf Health Soc Care. doi:10.3109/17538157.2012.674586
  83. 83.
    Silva BM, Lopes IM, Rodrigues JJ, Ray P (2011) SapoFitness: a mobile health application for dietary evaluation. In: Proceedings of 18th international conference on e-health networking, applications and servicesGoogle Scholar
  84. 84.
    Maitland J, Sherwood S, Barkhuus L, Anderson I, Hall M, Brown B, Chalmers M, Muller M (2006) Increasing the awareness of daily levels with pervasive computing. In: Proceedings of pervasive health conference and workshop. doi:10.1109/PCTHEALTH.2006.361667
  85. 85.
    Anderson I, Maitland J, Sherwood S, Barkhuus L, Chalmers M, Hall M, Brown B, Muller H (2007) Shakra: tracking and sharing daily activity levels with unaugmented mobile phones. Mob Netw Appl 12:185–199CrossRefGoogle Scholar
  86. 86.
    Kuehn E, Sieck, J (2010) Location and situation based services for pervasive adventure games. In: Proceedings of 12th international conference on computer modelling and simulation. doi:10.1109/UKSIM
  87. 87.
    Kuehn E, Sieck J (2009) Design and implementation of location and situation based services for a pervasive mobile adventure game. In: Proceedings of IEEE international workshop on intelligent data acquisition and advanced computing systems: technology and applications. doi:10.1109/2010.95UKSIM
  88. 88.
    Reed AA, Samuel B, Sullivan A, Grant R, Grow A, Lazaro J, Mahal J, Kurniawan S, Walker M, Wardrip-Fruin N (2011a) SpyFeet: an exercise RPG. In: Proceedings of the 6th international conference on the foundation of digital gamesGoogle Scholar
  89. 89.
    Reed A A, Samuel B, Sullivan A, Grant R, Grow A, Lazaro J, Mahal J, Kurniawan S, Walker M, Wardrip-Fruin N (2011b) A step towards the future of role-playing games: The SpyFeet mobile {RPG} project. In: Proceedings of the 7th annual international artificial intelligence and interactive digital entertainment conferenceGoogle Scholar
  90. 90.
    Khalil A, Glal S (2009) StepUp: a step counter mobile application to promote healthy lifestyle. In: Proceedings of the 2009 international conference on the current trends in information technology. doi:10.1109/CTIT.2009.5423113
  91. 91.
    Zhu F, Bosch M, Boushey C J, Delp E J (2010) An image analysis system for dietary assessment and evaluation. In: Proceedings of 2010 IEEE 17th international conference on image processing. doi:10.1109/ICIP.2010.5650848
  92. 92.
    Khanna N, Boushey CJ, Kerr D, Okos M, Ebert DS, Delp EJ (2010) An overview of the technology assisted dietary assessment project at Purdue University. In: Proceedings of 2010 IEEE international symposium on multimedia. doi:10.1109/ISM.2010.50
  93. 93.
    Six BL, Tusarebeca ES, Fengqing Z, Mariappan A, Bosch M, Delp EJ, Ebert DS, Kerr DA, Houshey CJ (2010) Evidence-based development of a mobile telephone food record. J Am Diet Assoc 110:74–79. doi:10.1016/j.jada.2009.10.010 CrossRefGoogle Scholar
  94. 94.
    Pollak JP, Gay G, Bryne S, Wagner W, Retelny D, Humphreys L (2010) It’s time to eat! Using mobile games to promote healthy eating. Pervasive Comput 9(3):21–27. doi:10.1109/MPRV.2010.41 CrossRefGoogle Scholar
  95. 95.
    Bryne S, Gay G, Pollack JP, Gonzales A, Retelny D, Lee T, Wansink B (2012) Caring for mobile phone-based virtual pets can influence youth eating behaviours. J Child Media 6(1):83–99. doi:10.1080/17482798.2011.633410 CrossRefGoogle Scholar
  96. 96.
    Oliveira R, Oliver N (2008) TripleBeat: enhancing exercise performance with persuasion. In: Proceedings of MobileHCI 2008. doi:10.1145/1409240.1409268
  97. 97.
    Consolvo S, McDonald DW, Toscos T, Chen MY, Froehlich J, Harrison B, Klasnja P, LaMarc A, LeGrand L, Libby R, Smith I, Landay JA (2008a) Activity sensing in the wild: a field trial of UbiFit garden. In: Proceedings of CHI 2008. doi:10.1145/1357054.1357335
  98. 98.
    Consolvo S, Klasnja P, McDonald DW, Avrahami D, Froehlich J, LeGrand L, Mosher K, Landay JA (2008b) Flowers or a robot army? Encouraging awareness and activity with personal, mobile displays. In: Proceedings of the 10th international conference on ubiquitous computing. doi:10.1145/1409635.1409644
  99. 99.
    Consolvo S, Klasnja P, McDonald DW, Landay JA (2009a) Goal-setting considerations for persuasive technologies that encourage physical activity. In: Proceedings of the international conference on persuasive technology. doi:10.1145/1541948.1541960
  100. 100.
    Consolvo S, McDonald DW, Landay JA (2009b) Theory-driven design strategies for technologies that support behaviour change in everyday life. In: Proceedings of the 27th international conference on human factors in computing systems. doi:10.1145/1518701.1518766
  101. 101.
    Klasnja P, Consolvo S, McDonald, DW, Landay JA, Pratt W (2009a) Using mobile and personal sensing technologies to support health behaviour change in everyday life: lessons learned. In: Proceedings of the annual conference of the American medical informatics association. doi:
  102. 102.
    Hamilton I, Imperatore G, Dunlop M, Rowe D, Hewitt A(2012) Walk2Build : a GPS game for mobile exergaming with city visualization. In: Proceedings of MobileHCI 2012Google Scholar
  103. 103.
    Freyne J, Bhandari D, Shlomo B, Borlyse L, Campbell C, Chau S (2010) Mobile mentor: weight management platform. In: Proceedings of the 15th international conference on intelligent user interface. doi:10.1145/1719970.1720046
  104. 104.
    Freyne J, Brindal E, Hendrie G, Berkovsky S, Coombe M (2012) Mobile applications to support dietary change: highlighting the importance of evaluation context. In: Proceedings of human factors in computing systems CHI EA. doi:10.1145/2212776.2223709
  105. 105.
    Mattila E, Parkka J, Hermersdorf M, Kaasinen J, Vainio J, Samposalo K, Merilahti J, Kolari J, Kulju M, Lappalainen R, Korhonen I (2008) Mobile diary for wellness management-results on usage and usability in two user studies. IEEE Trans Inf Technol Biomed 12(4):501–511. doi:10.1109/TITB.2007.908237 CrossRefGoogle Scholar
  106. 106.
    Mattila E (2010) Design and evaluation of a mobile phone diary for personal health management. Doctoral Thesis, VTT Technical Research Centre of FinlandGoogle Scholar
  107. 107.
    Mattila E, Lappalainen R, Parkka J, Salminen J, Korhonen I (2010) Use of a a mobile phone diary for observing weight management and related behaviours. J Telemed Telecare 16(5):260–264. doi:10.1258/jtt.2009.091103 CrossRefGoogle Scholar
  108. 108.
    Mattila E, Korhonen I, Salminen J, Ahtinen A, Koskinen E, Sarela A, Parlka J, Lappalainen R (2010) Empowering citizens for well-being and chronic disease management with wellness diary. IEEE Trans Inf Technol Biomed 14(2):456–463. doi:10.1109/TITB.2009.2037751 CrossRefGoogle Scholar
  109. 109.
    Chuah M, Jakes G, Qin Z (2012) WifiTreasureHunt: a mobile social application for staying active physically. In: Proceedings of the 2012 ACM conference on ubiquitous computing. doi:10.1145/2370216.2370339
  110. 110.
    Intille SS, Albinali F, Mota S, Kuris B, Botana P, Haskell WL (2011) Design of a wearable physical activity monitoring system using mobile phones and accelerometers. In: Proceedings of the 33rd annual international conference of the IEEE engineering in medicine and biology society. doi:10.1109/IEMBS.2011.6090611
  111. 111.
    Doran K, Pickford S, Austin C, Walker T, Barnes T (2010) World of workout: towards pervasive intrinsically motivated, mobile exergaming. In: Proceedings of meaningful playGoogle Scholar
  112. 112.
    Gerrig RJ (1993) Experiencing narrative worlds: on the psychological activities of reading. Yale University Press, New HavenGoogle Scholar
  113. 113.
    Green MC, Brock TC (2000) The role of transportation in the persuasiveness of public narratives. J Pers Soc Psychol 79(5):701–721. doi:10.1037/0022-3514.79.5.701 CrossRefGoogle Scholar
  114. 114.
    Weinstein ND, Sandman PM (1992) A model of the precaution adoption process: evidence from home radon testing. Health Psychol 1193:170–180. doi:10.1037/0278-6133.11.3.170 CrossRefGoogle Scholar
  115. 115.
    Bandura A (1986) Social foundations of thought and action: A social cognitive theory. Prentice-Hall, Englewood CliffsGoogle Scholar
  116. 116.
    Hassenzahl M, Burmester M, Koller F (2003) AttrakDiff: questionnaire to measure perceived hedonic and pragmatic quality. In: Ziegler J, Szwillus G (ed) Mensch and Computer 2003: Interaktion in Bewegung, pp 187–196Google Scholar
  117. 117.
    van den Berg MH, Schoones JW, Vlieland TPMV (2007) Internet-based physical activity interventions: a systematic review of the literature. J Med Internet Res 9(3). doi:10.2196/jmir.9.3.e26
  118. 118.
    Whiteley JA, Bailey BW, McInnis KJ (2008) State of the art reviews: Using the internet to promote physical activity and healthy eating in youth. Am J Lifestyle Med 2. doi:10.1177/1559827607311787
  119. 119.
    Arem H, Irwin M (2010) A review of web-based weight loss interventions in adults. Obes Manag 787:236–243Google Scholar
  120. 120.
    Mitchell WL, Economou D, Randall D (2000) God is an alien: understanding informant responses through user participation and observation. In: Proceedings of PDC2000 6th biennial participatory design conferenceGoogle Scholar
  121. 121.
    Scaife M, Rogers Y, Aldrich F, Davies M (1997) Designing for or designing with? Informant design for interactive learning environments. In: Proceedings of CHI ‘97: human factors in computing systemsGoogle Scholar
  122. 122.
    Nielsen J (1994) Heuristic evaluation. In: Nielsen J, Mack RL (eds) Usability inspection methods. Wiley, New YorkGoogle Scholar
  123. 123.
    Lewis C, Wharton C (1997) Cognitive walkthroughs. In: Helander M (ed) A guide to human factors and ergonomics. CRC Press, USAGoogle Scholar
  124. 124.
    Noar SM, Harrington NG, Van Stee SKV, Aldrich RS (2011) Tailored health communication to change lifestyle behaviours. Am J Lifestyle Med 5:112–122. doi:10.1177/1559827610387255 CrossRefGoogle Scholar
  125. 125.
    Krebs P, Prochaska JO, Rossi JS (2010) A meta-analysis of computer-tailored interventions for health behaviour change. Prev Med 51:214–221. doi:10.1016/j.ypmed.2010.06.004 CrossRefGoogle Scholar
  126. 126.
    Prochaska J, Velicer W (1997) The transtheoretical model of health behavior change. Am J Health Promot 12(1):38–48CrossRefGoogle Scholar
  127. 127.
    Duncan S (2005) Sources and types of social support in youth physical activity. Health Psychol 24:3–10. doi:10.1037/0278-6133.24.1.3 CrossRefGoogle Scholar
  128. 128.
    Voorhees CC, Murray D, Welk G, Birnbaum A, Ribisl KM, Johnson CC, Pfeiffer KA, Saksvig B, Jobe JB (2005) Role of peer social network factors and physical activity in adolescent girls. Am J Health Behav 29:183–190. doi:10.5993/AJHB.29.2.9 CrossRefGoogle Scholar
  129. 129.
    Consolvo, S., Everitt, K., Smith, I., Landay, J. A., 2006. Design requirements for technologies that encourage physical activity. In: Proceedings of CHI 2006Google Scholar
  130. 130.
    Klasnja P, Consolvo S, Choudhury T, Beckwith R, Hightower J (2009b) Exploring privacy concerns about personal sensing. In: Proceedings of the 7th international conference on pervasive putting. doi:10.1007/978-3-642-01516-8_13
  131. 131.
    Mutsuddi AU, Connelly K (2012) Text messages for encouraging physical activity: are they effective after the novelty effect wears off?. In: Proceedings of the 6th international conference on pervasive computing technologies for healthcare (Pervasive Health) and workshops. doi:10.4108/icst.pervasivehealth.2012.248715
  132. 132.
    Fogg BJ (2003) Persuasive technology: using computers to change what we think and do (interactive technologies). Morgan Kaufmann, MasssachusettsGoogle Scholar
  133. 133.
    Lenert L, Norman GJ, Mailhot M, Patrick K (2005) A framework for modeling health behavior protocols and their linkage to behavioural theory. J Biomed Inform 38:270–280. doi:10.1016/j.jbi.2004.12.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Human Factors Research Group, Faculty of EngineeringThe University of NottinghamNottinghamUK

Personalised recommendations