Personal and Ubiquitous Computing

, Volume 18, Issue 6, pp 1515–1532 | Cite as

Designing reality-based interfaces for experiential bio-design

  • Orit Shaer
  • Consuelo Valdes
  • Sirui Liu
  • Kara Lu
  • Kimberly Chang
  • Wendy Xu
  • Traci L. Haddock
  • Swapnil Bhatia
  • Douglas Densmore
  • Robert Kincaid
Original Article

Abstract

Reality-based interfaces (RBIs) such as tabletop and tangible user interfaces draw upon ideas from embodied cognition to offer a more natural, intuitive, and accessible form of interaction that reduces the mental effort required to learn and operate computational systems. However, to date, little research has been devoted to investigating the strengths and limitations of applying reality-based interaction for promoting learning of complex scientific concepts at the college level. We propose that RBIs offer unique opportunities for enhancing college-level science education. This paper presents three main contributions: (1) design considerations and participatory design process for enhancing college-level science education through reality-based interaction, (2) reflections on the design, implementation, and validation of two case studies—RBIs for learning synthetic biology, and (3) discussion of opportunities and challenges for advancing learning of college-level sciences through next-generation interfaces.

Keywords

Reality-based interaction Multi-touch Bioinformatics Collaborative learning Synthetic biology 

References

  1. 1.
    (2013) Retrieved from Geneious: http://www.geneious.com
  2. 2.
  3. 3.
    (2013) Retrieved from Genme Compiler: http://www.genomecompiler.com
  4. 4.
    (2013) Retrieved from Vector Express: http://www.vectorexpress.com
  5. 5.
    (2013) Retrieved from MIT Parts Registry: http://partsregistry.org/Main_Page
  6. 6.
    (2013) Retrieved from iBioSim: http://www.async.ece.utah.edu/iBioSim/
  7. 7.
    (2013) Retrieved from BioBuilder: http://www.biobuilder.org
  8. 8.
    (2013) Retrieved from International Genetically Engineered Machine (iGEM): http://igem.org/About
  9. 9.
    (2013) Retrieved from DIY Bio: http://diybio.org
  10. 10.
    (2013) Retrieved from Sifteo: https://www.sifteo.com/
  11. 11.
    (2013) Retrieved from The UNAFold Web Server: http://mfold.rna.albany.edu/
  12. 12.
    (2013) Retrieved from Microsoft PixelSense: http://www.microsoft.com/en-us/pixelsense/default.aspx
  13. 13.
    Anderson JC (2013) Synthetic Biology Learning trailsGoogle Scholar
  14. 14.
    Anderson ML (2003) Embodied cognition: a field guide. Artif Intell 149(1):91–130Google Scholar
  15. 15.
    Andrianantoandro E, Basu S et al (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2:0028CrossRefGoogle Scholar
  16. 16.
    Antle A (2007) The CTI framework: informing the design of tangible systems for children. In: TEI. ACM Press, LA, pp 195–202Google Scholar
  17. 17.
    Antle AN, Wise A (2013) Getting down to details: using learning theory to inform tangibles research and design for children. Interact Comput 25(1):1–20Google Scholar
  18. 18.
    Antle AN, Droumeva M, Ha D (2009). Hands on what? Comparing children’s mouse-based and tangible-based interaction. In: International conference on interaction design and children. ACM, New York, pp 80–88Google Scholar
  19. 19.
    Beal J, Lu T, Weiss R (2011) automatic compilation from high-level biologically-oriented programming language to genetic regulatory networks. Plos One 6(8):e22490Google Scholar
  20. 20.
    Beal J, Weiss R, Densmore D, Adler A, Appleton E, Babb J, Yaman F (2012) An end-to-end workflow for engineering of biological networks from high-level specifications. ACS Synth Biol 1(8):317–331CrossRefGoogle Scholar
  21. 21.
    Beeland WJ (2002) Student engagement, visual learning and technology: can interactive whiteboards help. In: Association of IT for teachingGoogle Scholar
  22. 22.
    Bilitchenko L, Liu A, Cheung S, Weeding E, Xia B, Leguia M, Densmore D (2011). Eugene—a domain specific language for specifying and constraining synthetic biological parts, devices, and systems. PLoS One 6(4):e18882. doi: 10.1371/journal.pone.0018882
  23. 23.
    BioBricks Foundation (2011) Retrieved from http://biobricks.org/
  24. 24.
    Block F, Horn MS, Phillips BC, Diamond J, Evans EM, Shen C (2012) The DeepTree exhibit: visualizing the tree of life to facilitate informal learning. In: Ming L (ed) IEEE transactions on visualization and computer graphics. IEEE, AtlantaGoogle Scholar
  25. 25.
    Brooks FP, Ouh-Young M, Kilpatrick PJ (1990) Project GROPEHaptic displays for scientific visualization. In: Beach RJ (ed) SIGGRAPH computer graphics and interactive techniques. ACM SIGGRAPH, Dallas, pp 177–185Google Scholar
  26. 26.
    Cai Y, Wilson M, Peccoud J (2012) GenoCAD for iGEM: a grammatical approach to the design of standard-compliant constructs. Nucleic Acids Res 38(8):2637–3644Google Scholar
  27. 27.
    Carini RK (2006) Student engagement and student learning: testing the linkages. Res High Educ 47(1):1–32Google Scholar
  28. 28.
    Chandran D, Bergmann F, Sauro H (2009). TinkerCell: modular CAD tool for synthetic biology. J Biol Eng 3:19Google Scholar
  29. 29.
    Chandrasekharan S (2009) Building to discover: a common coding model. Cogn Sci 33(6):1059–1086CrossRefGoogle Scholar
  30. 30.
    Chang K, Xu W, Francisco N, Valdes C, Kincaid R, Shaer O (2012) SynFlo: an interactive installation introducing synthetic biology concepts. In: Interactive tabletops and surfaces. ACM, CambridgeGoogle Scholar
  31. 31.
    Corno LA (1983) The role of cognitive engagement in classroom learning and motivation. Educ Psychol 18(2):88–108Google Scholar
  32. 32.
    Cox D (1991) Collaborations in art/science: renaissance teams. J Biocommun 18(2):10–15Google Scholar
  33. 33.
    Davies M, Gould S, Ma S, Mullin V, Stanley M, Walbridge A, Wilson C (2009) E. chromi Cambridge. Retrieved 2011, from Cambridge iGEM Team: http://www.google.com/url?q=http%3A%2F%2F2009.igem.org%2FTeam%3ACambridge&sa=D&sntz=1&usg=AFQjCNF1Fr1mXKhrQk6UiJkJJotF1NzAtQ
  34. 34.
    Fishkin K (2004) A taxonomy for and analysis of tangible interfaces. Pers Ubiquit Comput 8(5):347–358Google Scholar
  35. 35.
    Ghamari R, Stanton B, Haddock T, Bhatia S, Clancy K, Peterson T, Densmore D (2011) Applying hardware description languages to genetic circuit design. In: International workshop on bio-design automationGoogle Scholar
  36. 36.
    Gillet A, Sanner M, Stoffler D, Goodsell D, Olson A (2004) Augmented reality with tangible auto-fabricated models for molecular biology applications. In: Visualization. IEEE, AustinGoogle Scholar
  37. 37.
    Glenberg AM (2008) Embodiment for education. In: Calvo P, Gomila T (ed) Handbook of cognitive science: an embodied approach, pp 355–372Google Scholar
  38. 38.
    Hart SG, Staveland LE (1988) Development of NASA-TLX (task load index): results of empirical and theoretical research. In: Hancock PA, Meshkati N (eds) Human Mental Workload. North Holland Press, AmsterdamGoogle Scholar
  39. 39.
    Hollan J, Hutchins E, Kirsh D (2000). Distributed cognition: toward a new foundation for human-computer interaction research. In: Grudin J (ed) Human factors in computing systems. ACM, Hague, pp 174–196Google Scholar
  40. 40.
    Horn M, Tobiasz M, Shen C (2009) Visualizing biodiversity with voronoi treemaps. In: Anton F (ed) International symposium on voronoi diagrams in science and engineering. IEEE, Copenhagen, pp 265–270Google Scholar
  41. 41.
    Hornecker E, Buur J (2006) Getting a grip on tangible interaction: a framework on physical space and social interaction. In: Grinter R, Rodden T, Aoki P, Cutrell E, Jeffries R, Olson G (eds) Human factors in computing systems. ACM, New York, pp 437–446Google Scholar
  42. 42.
    Jacob RJ, Girouard A, Hirshfield L, Horn MS, Shaer O, Solovey ET, Zigelbaum J (2008) Reality-based interaction: a framework for post-WIMP interfaces. In: Human factors in computing systems. ACM, FlorenceGoogle Scholar
  43. 43.
    Jermann P, Zufferey G, Schneider B, Lucci A, Lepine S, Dillenbourg P (2003). Physical space and division of labor around a tabletop tangible simulation. In: O'Malley C, Suthers D, Reimann P, Dimitracopoulou A (eds) International computer-supported collaborative learning. ISLS, Rhodes, pp 345–349Google Scholar
  44. 44.
    Keasling JD (2007) Renewable energy from synthetic biology. Retrieved from nanoHUB.org: http://nanohub.org/resources/3297
  45. 45.
    Kirby JR (2010) Designer bacteria degrades toxin. Nat Chem Biol 6(6):398–399CrossRefGoogle Scholar
  46. 46.
    Kirsh D (1995) The intelligent use of space. Artif Intell 73(1–2):31–68Google Scholar
  47. 47.
    Kirsh D, Maglio P (1994) On distinguishing epistemic from pragmatic action. Cogn Sci 18(4):513–549Google Scholar
  48. 48.
    Kuldell N (2007) Authentic teaching through synthetic biology. J Biol Eng 20(2):156–160Google Scholar
  49. 49.
    Kuznetsov ST (2012) (DIY) biology and opportunities for HCI. In: Designing interactive systems. ACM, NewcastleGoogle Scholar
  50. 50.
    Linshiz G, Stawski N, Poust S, Bi C, Keasling JD, Hillson NJ (2012) PaR–PaR laboratory automation platform. ACS Synth Biol 2(5):216–222Google Scholar
  51. 51.
    Liu S, Lu K, Seifeselassie N, Grote C, Francisco N, Lin V, Shaer O (2012) MoClo Planner: supporting innovation in bio-design through multitouch interaction. In: Interactive tabletops and surfaces. ACM, CambridgeGoogle Scholar
  52. 52.
    Marshall P (2007) Do tangible interfaces enhance learning? In: TEI. ACM Press, LA, pp 163–170Google Scholar
  53. 53.
    Mitchell R, Yehudit JD (2011) Experiential engineering through iGEM—an undergraduate summer competition in synthetic biology. J Sci Educ Technol 20(2):156Google Scholar
  54. 54.
    Nersessian NJ (2002) The cognitive basis of model-based reasoning in science. In: Carruthers P, Stich S, Siegal M (eds) The cognitive basis of science. Cambridge University Press, Cambridge, pp 133–153CrossRefGoogle Scholar
  55. 55.
    Nersessian NJ (2008) Creating scientific concepts. MIT Press, CambridgeGoogle Scholar
  56. 56.
    Newstetter W, Behravesh E, Nersessian N, Fasse B (2010) Design principles for problem-driven learning laboratories in biomedical engineering education. Retrieved October 2010, from NCBI: http://www.ncbi.nlm.nih.gov/pubmed/20480239
  57. 57.
    O’brien HL, Toms E (2008) What is user engagement? A conceptual framework for defining user engagement with technology. J Am Soc Inf Sci Technol 59(6):938–955Google Scholar
  58. 58.
    Okada T, Simon H (1997) Collaborative discovery in a scientific domain. Cogn Sci 21(2):109–146Google Scholar
  59. 59.
    Piaget J (1952) The origins of intelligence in children. International Universities Press, New YorkCrossRefGoogle Scholar
  60. 60.
    Price S, Sheridan J, Falcao T, Roussos G (2008) Towards a framework for investigating tangible environments for learning. Int J Art Technol (special issue on Tangible and Embedded Interaction) 1(3–4):351–368Google Scholar
  61. 61.
    Rotgans J, Schmidt H (2011) The role of teachers in facilitating situational interest in an active-learning classroom. Teach Teach Educ 27(1):37–42Google Scholar
  62. 62.
    Rubacha M, Rattan A, Hosselet S (2011) A review of electronic laboratory notebooks available in the market today. J Assoc Lab Autom 16(1):90–98Google Scholar
  63. 63.
    Ryall K, Morris MR, Everitt K, Forlines C, Shen C (2006) Experiences with and observations of direct-touch tabletops. In: Tabletop. IEEE, CambridgeGoogle Scholar
  64. 64.
    Salis H (2011) The ribosome binding site calculator. Methods Enzymol 498:19–42CrossRefGoogle Scholar
  65. 65.
    Scaiffe M, Rogers Y (1996) External cognition: how do graphical representations work? Int J Hum Comput Stud 45(2):185–213Google Scholar
  66. 66.
    Schindler S (2007) Model, theory, and evidence in the discovery of the DNA structure. HPS1 Integr Hist Philos SciGoogle Scholar
  67. 67.
    Schkolne S, Ishii H, Schroder P (2004) Immersive design of DNA molecules with a tangible interface. In: Visualization. IEEE, Washington, DC, pp 227–234Google Scholar
  68. 68.
    Schneider BJ (2011) Benefits of a tangible interface for collaborative learning and interaction. IEEE Trans Learn Technol 4(3):222–232Google Scholar
  69. 69.
    Schneider B, Strait M, Muller L, Elfenbein S, Shaer O, Shen C (2012) Phylo-genie: engaging students in collaborative ‘treethinking’ through tabletop techniques. In: Human factors in computing systems. ACM, AustinGoogle Scholar
  70. 70.
    Shaer O, Hornecker E (2010) Tangible user interfaces: past, present, and future directions. Found Trends Hum Comput Interact 3(1–2):1–137Google Scholar
  71. 71.
    Shaer O, Kol G, Strait M, Fan C, Catherine G, Elfenbein S (2010) G-nome surfer: a tabletop interface for collaborative. In: Conference on human factors in computing systems. ACMGoogle Scholar
  72. 72.
    Shaer O, Leland N, Calvillo-Gamez E, Jacob R (2004) The TAC paradigm: specifying tangible user interfaces. Pers Ubiquit Comput 8(5):359–369Google Scholar
  73. 73.
    Shaer O, Mazalek A, Ullmer B, Konkell M (2013) From big data to insights: opportunities and challenges for TEI in genomics. In: Tangible, embedded and embodied interaction. ACM, BarcelonaGoogle Scholar
  74. 74.
    Shaer O, Strait M, Valdes C, Feng T, Lintz M, Wang H (2011) Enhancing genomic learning through tabletop interaction. In: Human factors in computing systems. ACM, VancouverGoogle Scholar
  75. 75.
    Shaer O, Strait M, Valdes C, Wang H, Feng T, Lintz M, Liu S (2012) The design, development, and deployment of a tabletop interface for collaborative exploration of genomic data. Int J Hum Comput Stud 70(10):746–764Google Scholar
  76. 76.
    Synthetic Biology Open Language (2011) Retrieved from http://www.sbolstandard.org/
  77. 77.
    Tabard A, Hincapie-Ramos JD, Bardram JE (2012) The eLabBench in the wild—supporting exploration in a molecular biology lab. In: Human factors in computing systems. ACM, AustinGoogle Scholar
  78. 78.
    Tabard A, Mackay W, Eastmond E (2008) From individual to collaborative: the evolution of prism, a hybrid laboratory notebook. In: Computer supported cooperative work. ACM, New York, pp 569–578Google Scholar
  79. 79.
    Valdes C, Ferreirae M, Feng T, Wang H, Tempel K, Liu S, Shaer O (2012) A collaborative environment for engaging novices in scientific inquiry. In: Interactice tabletops and surfaces. ACM, CambridgeGoogle Scholar
  80. 80.
    Vasilev V, Liu C, Haddock T, Bhatia S, Adler A, Yaman F, Densmore D (2011) A software stack for specification and robotic execution of protocols for synthetic biological engineering. In: Workshop on bio-design automationGoogle Scholar
  81. 81.
    Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6(2):e16765Google Scholar
  82. 82.
    Wigdor D, Jiang H, Forlines C, Borking M, Shen C (2009). The WeSpace: the design, development, and deployment of a walk-up and share multi-surface visual collaboration system. In: Human factors in computing systems. ACM, BostonGoogle Scholar
  83. 83.
    Wilson M (2002) Six views of embodied cognition. Psychon Bull Rev 9(4):625–636Google Scholar
  84. 84.
    Xia B, Bhatia S (2011). Clotho: a software platform for the creation of synthetic biological systems, a developer’s and user’s guide for Clotho v2.0. Methods Enzymol 498:97–135Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Orit Shaer
    • 1
  • Consuelo Valdes
    • 1
  • Sirui Liu
    • 1
  • Kara Lu
    • 1
  • Kimberly Chang
    • 1
  • Wendy Xu
    • 1
  • Traci L. Haddock
    • 2
  • Swapnil Bhatia
    • 2
  • Douglas Densmore
    • 2
  • Robert Kincaid
    • 3
  1. 1.Wellesley CollegeWellesleyUSA
  2. 2.Department of Electrical and Computer EngineeringBoston UniversityBostonUSA
  3. 3.Agilent LaboratoriesPalo AltoUSA

Personalised recommendations