Personal and Ubiquitous Computing

, Volume 18, Issue 1, pp 75–90 | Cite as

An efficient privacy-preserving solution for finding the nearest doctor

  • George Drosatos
  • Pavlos S. Efraimidis
Original Article


In this work, we define the Nearest Doctor Problem for finding the nearest doctor in case of an emergency and present a privacy-preserving protocol for solving it. The solution is based on cryptographic primitives and makes use of the current location of each participating doctor. The protocol is efficient and protects the privacy of the doctors’ locations. A prototype implementing the proposed solution for a community of doctors that use mobile devices to obtain their current location is presented. The prototype is evaluated on experimental communities with up to several hundred doctor agents.


Location privacy Personal data Privacy-preserving computation Peer-to-Peer network 


  1. 1.
    Acquisti A, Gritzalis S, Lambrinoudakis C, De Capitani di Vimercati S (2008) Digital privacy. Auerbach Publications, Taylor & Francis Group, 6000 Broken Sound ParkWay NWGoogle Scholar
  2. 2.
    Bickson D, Dolev D, Bezman G, Pinkas B (2008) Peer-to-peer secure multi-party numerical computation. IEEE international conference on Peer-to-Peer computing, pp 257–266Google Scholar
  3. 3.
    Bogetoft P, Christensen DL, Damgård I, Geisler M, Jakobsen T, Krøigaard M, Nielsen JD, Nielsen JB, Nielsen K, Pagter J, Schwartzbach M, Toft T (2009) Secure multiparty computation goes live. In: Dingledine R, Golle P (eds) Financial cryptography and data security. Springer, Berlin, pp 325–343Google Scholar
  4. 4.
    Brandt F (2005) Efficient cryptographic protocol design based on distributed el gamal encryption. In: Proceedings of the 8th international conference on information security and cryptology (ICISC 2005), vol 3935. Springer, LNCS, pp 32–47Google Scholar
  5. 5.
    Ciriani V, Capitani di Vimercati S, Foresti S, Samarati P (2007) κ-anonymity. In: Yu T, Jajodia S (eds) Secure data management in decentralized systems, advances in information security, vol 33. Springer, Berlin, pp 323–353CrossRefGoogle Scholar
  6. 6.
    Clarkson M, Chong S, Myers A (2008) Civitas: Toward a secure voting system. In: IEEE symposium on security and privacy (SP 2008), pp 354–368Google Scholar
  7. 7.
    Cramer R, Gennaro R, Schoenmakers B (1997) A secure and optimally efficient multi-authority election scheme. In: Proceedings of the 16th annual international conference on theory and application of cryptographic techniques. Springer, Berlin, EUROCRYPT’97, pp 103–118Google Scholar
  8. 8.
    Cramer R, Damgård I, Nielsen JB (2001) Multiparty computation from threshold homomorphic encryption. In: Proceedings of the international conference on the theory and application of cryptographic techniques: advances in cryptology. Springer, London, EUROCRYPT’01, pp 280–299Google Scholar
  9. 9.
    Damgård I, Nielsen J (2003) Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Advances in cryptology—CRYPTO’03 (Lecture notes in computer science), vol 2729. Springer, Berlin, pp 247–264Google Scholar
  10. 10.
    Diffie W, Hellman ME (1976) New directions in cryptography. IEEE Trans Inf Theory 22(6):644–654CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dingledine R, Mathewson N, Syverson P (2004) Tor: the second-generation onion router. In: Proceedings of the 13th USENIX security symposium, pp 303–320Google Scholar
  12. 12.
    Efraimidis PS, Drosatos G, Nalbadis F, Tasidou A (2009) Towards privacy in personal data management. J Inf Manag Comput Secur 17(4):311–329Google Scholar
  13. 13.
    Europe’s Information Society (2009) eSafety. URL
  14. 14.
    Gennaro R, Jarecki S, Krawczyk H, Rabin T (2007) Secure distributed key generation for discrete-log based cryptosystems. J Cryptol 20:51–83CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Gentry C (2009) Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st annual ACM symposium on theory of computing, ACM, New York, NY, USA, STOC’09, pp 169–178Google Scholar
  16. 16.
    Gentry C (2010) Computing arbitrary functions of encrypted data. Commun ACM 53:97–105CrossRefGoogle Scholar
  17. 17.
    Goldreich O (2004) The foundations of cryptography, vol 2. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. 18.
    Goldreich O, Micali S, Wigderson A (1987) How to play any mental game or a completeness theorem for protocols with honest majority. In: Proceedings of the nineteenth annual ACM symposium on Theory of computing, ACM, New York, NY, USA, STOC’87, pp 218–229Google Scholar
  19. 19.
    Goldreich O, Micali S, Wigderson A (1987) How to prove all NP statements in zero-knowledge and a methodology of cryptographic protocol design (extended abstract). In: Odlyzko A (ed) Advances in cryptology—CRYPTO’86 (Lecture notes in computer science), vol 263. Springer, Berlin, pp 171–185Google Scholar
  20. 20.
    Hook D (2005) Beginning cryptography with Java. Wiley Publishing Inc., IndianapolisGoogle Scholar
  21. 21.
    Karger DR, Ruhl M (2004) Diminished chord: a protocol for heterogeneous subgroup formation in peer-to-peer networks. In: Proceedings of the third international conference on peer-to-peer systems. Springer-Verlag, Berlin, Heidelberg, IPTPS'04, pp 288–297Google Scholar
  22. 22.
    Kissner L, Song D (2005) Privacy-preserving set operations. In: Shoup V (ed) Advances in cryptology—CRYPTO’05 (Lecture notes in computer science), vol 3621. Springer, Berlin, pp 241–257Google Scholar
  23. 23.
    Lindell Y, Pinkas B (2009) Secure multiparty computation for privacy-preserving data mining. Confidentiality 1:59–98Google Scholar
  24. 24.
    Menezes AJ, van Oorschot PC, Vanstone SA (1997) Handbook of applied cryptography. CRC Press, Inc., Boca RatonzbMATHGoogle Scholar
  25. 25.
    Paillier P (1999) Public-key cryptosystems based on composite degree residue classes. In: Stern J (ed) Advances in cryptology—EUROCRYPT 1999, vol 1592. Springer, Berlin, Heidelberg, LNCS, pp 223–238Google Scholar
  26. 26.
    Peng K, Boyd C, Dawson E, Lee B (2005) Ciphertext comparison, a new solution to the millionaire problem. In: Proceedings of the 7th international conference on information and communications security (ICICS 2005), vol 3783. Springer, LNCS, pp 84–96Google Scholar
  27. 27.
    Priyantha NB, Chakraborty A, Balakrishnan H (2000) The Cricket location-support system. In: MobiCom ’00: Proceedings of the 6th annual international conference on mobile computing and networking, ACM, New York, NY, USA, pp 32–43Google Scholar
  28. 28.
    Quisquater JJ, Guillou L, Annick M, Berson T (1989) How to explain zero-knowledge protocols to your children. In: Proceedings on advances in cryptology, Springer New York, Inc., New York, NY, USA, CRYPTO’89, pp 628–631Google Scholar
  29. 29.
    Reed M, Syverson P, Goldschlag D (1998) Anonymous connections and onion routing. IEEE J Sel Areas Commun 16(4):482–494Google Scholar
  30. 30.
    Reiter MK, Rubin AD (1998) Crowds: anonymity for web transactions. ACM Trans Inf Syst Secur 1:66–92CrossRefGoogle Scholar
  31. 31.
    Rivest R, Adleman L, Dertouzos M (1978) On data banks and privacy homomorphisms. In: DeMillo R, Dobkin D, Jones A, Lipton R (eds) Foundations of secure computation. Academic Press, New York, pp 169–177Google Scholar
  32. 32.
    Stamatelatos G, Drosatos G, Efraimidis PS (2009) Quantum: A peer-to-peer network for distributed computations with enhanced privacy. In: EYRHKA 2009 conference proceedings, 3rd Panhellenic scientific student conference on informatics, pp 201–210, written in Modern GreekGoogle Scholar
  33. 33.
    Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H (2001) Chord: A scalable peer-to-peer lookup service for internet applications. In: ACM SIGCOMM’01, San Diego, CA, pp 149–160Google Scholar
  34. 34.
    To Vima Online (2007) Missing doctor incident. URL
  35. 35.
    Want R, Hopper A, Falcão V, Gibbons J (1992) The active badge location system. ACM Trans Inf Syst (TOIS) 10:91–102CrossRefGoogle Scholar
  36. 36.
    Ward A, Jones A, Hopper A (1997) A new location technique for the active office. IEEE Pers Commun 4(5):42–47CrossRefGoogle Scholar
  37. 37.
    Yao ACC (1982) Protocols for secure computations (extended abstract). In: Proceedings of twenty-third IEEE symposium on foundations of computer science, Chicago, Illinois, pp 160–164Google Scholar
  38. 38.
    Yokoo M, Suzuki K (2002) Secure multi-agent dynamic programming based on homomorphic encryption and its application to combinatorial auctions. In: Proceedings of the first international joint conference on Autonomous agents and multi-agent systems: part 1, ACM, New York, NY, USA, AAMAS’02, pp 112–119Google Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations