Personal and Ubiquitous Computing

, Volume 17, Issue 7, pp 1503–1514 | Cite as

Interactive visualization of medical volume models in mobile devices

  • Lázaro Campoalegre
  • Pere Brunet
  • Isabel Navazo
Original Article


Interactive visualization of volume models in standard mobile devices is a challenging present problem with increasing interest from new application fields like telemedicine. The complexity of present volume models in medical applications is continuously increasing, therefore increasing the gap between the available models and the rendering capabilities in low-end mobile clients. New and efficient rendering algorithms and interaction paradigms are required for these small platforms. In this paper, we propose a transfer function-aware compression and interaction scheme, for client-server architectures with visualization on standard mobile devices. The scheme is block-based, supporting adaptive ray-casting in the client. Our two-level ray-casting allows focusing on small details on targeted regions while keeping bounded memory requirements in the GPU of the client. Our approach includes a transfer function-aware compression scheme based on a local wavelet transformation, together with a bricking scheme that supports interactive inspection and levels of detail in the mobile device client. We also use a quantization technique that takes into account a perceptive metrics of the visual error. Our results show that we can have full interaction with high compression rates and with transmitted model sizes that can be of the order of a single photographic image.


Interaction on mobile devices Visualization on small displays Medical visualization 



This project has been supported by the TIN2010-20590-C02-01 Project of the Spanish Government. L. Campoalegre has been supported by a UPC PhD grant. The authors would like to thank the anonymous reviewers for their useful comments and Marcos Balsa and Eva Monclús for their help on GPU mobile programming.


  1. 1.
    Boada I, Navazo I, Scopigno R (2001) Multiresolution volume visualization with a texture-based octree. Vis Comput 17(3):185–197CrossRefzbMATHGoogle Scholar
  2. 2.
    Butson C, Tamm G, Jain S, Fogal T, Kruger J (2012) Evaluation of interactive visualization on mobile computing platforms for selection of deep brain stimulation parameters. In: IEEE transactions on visualization and computer graphics. IEEE Computer Society. doi:
  3. 3.
    Guthe S, Strasser W (2001) Real-time decompression and visualization of animated volume data. In: Proceedings of IEEE visualization 2001. IEEE Computer Society, pp 349–356Google Scholar
  4. 4.
    Hadwiger M, Kniss JM, Rezk-salama C, Weiskopf D, Engel K (2006) Real-time volume graphics. A. K. Peters, Ltd., NatickGoogle Scholar
  5. 5.
    Ihm I, Park S (1998) Wavelet-based 3D compression scheme for very large volume data. In: Graphics Interface, pp 107–116Google Scholar
  6. 6.
    Ihm I, Park S (1999) Wavelet-based 3D compression scheme for interactive visualization of very large volume data. Comput Graph Forum 18:3–15CrossRefGoogle Scholar
  7. 7.
    ImageVis3D: a real-time volume rendering tool for large data. Scientific Computing and Imaging Institute (SCI).
  8. 8.
    Jeong S-J, Kaufman AE (2007) Interactive wireless virtual colonoscopy. Vis Comput 23(8):545–557CrossRefGoogle Scholar
  9. 9.
    Kim T-Y, Shin Y-G (1999) An efficient wavelet-based compression method for volume rendering. In: Pacific conference on computer graphics and applications, p 147Google Scholar
  10. 10.
    Krüger J, Westermann R (2003) Acceleration techniques for GPU-based volume rendering. In: IEEE Vis, pp 287–292Google Scholar
  11. 11.
    LaMar E, Hamann B, Joy KI (1999) Multiresolution techniques for interactive texture-based volume visualization. In: IEEE Vis, pp 355–361Google Scholar
  12. 12.
    Lamberti F, Sanna A (2005) A solution for displaying medical data models on mobile devices. WSEAS Trans Inform Sci Appl 2:258–264Google Scholar
  13. 13.
    Mantiuk R, Kim KJ, Rempel AG, Heidrich W (2011) Hdr-vdp-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans Graph 30(4):40CrossRefGoogle Scholar
  14. 14.
    Moser M, Weiskopf D (2008) Interactive volume rendering on mobile devices. Vis Model Vis 8:217–226Google Scholar
  15. 15.
    Muraki S (1992) Approximation and rendering of volume data using wavelet transforms. In: VIS’ 92: proceedings of the 3rd conference on visualization’ 92. IEEE Computer Society Press, Los Alamitos, pp 21–28Google Scholar
  16. 16.
    Nguyen K, Saupe D (2001) Rapid high quality compression of volume data for visualization. Comput Graph Forum 20(3):49–57Google Scholar
  17. 17.
    Ning P, Hesselink L (1992) Vector quantization for volume rendering. In VVS ’92: proceedings of the 1992 workshop on Volume visualization. ACM, New York, pp 69–74Google Scholar
  18. 18.
    Noguera J, Jiménez J (2012) Visualization of very large 3D volumes on mobile devices and WebGL. In: 20th WSCG international conference on computer graphics, visualization and computer vision. WSCGGoogle Scholar
  19. 19.
    Noguera JM, Jiménez J-R, Ogáyar CJ, Segura RJ (2012) Volume rendering strategies on mobile devices. In: GRAPP/IVAPP, pp 447–452Google Scholar
  20. 20.
    Röttger S, Guthe S, Weiskopf D, Ertl T, Straßer W (2003) Smart hardware-accelerated volume rendering. In: VisSymGoogle Scholar
  21. 21.
    Schneider J, Westermann R (2003) Compression domain volume rendering. In VIS ’03: proceedings of the 14th IEEE visualization 2003 (VIS’03). IEEE Computer Society, Washington, DC, p 39Google Scholar
  22. 22.
    Strengert M, Magallon M, Weiskopf D, Guthe S, Ertl T (2004) Hierarchical visualization and compression of large volume datasets using GPU clusters. In: 5th Eurographics/ACM SIGGRAPH symposium on parallel graphics and visualization (EGPGV 2004), pp 41–48Google Scholar
  23. 23.
    Vázquez P, Balsa M (2012) Practical volume rendering in mobile devices. In: International simposium on visual computing, Rethymnon, CreteGoogle Scholar
  24. 24.
    Weiler M, Westermann R, Hansen CD, Zimmerman K, Ertl T (2000) Level-of-detail volume rendering via 3D textures. In: Volviz, pp 7–13Google Scholar
  25. 25.
    Zhou H, Qu H, Wu Y, Chan M (2006) Volume visualization on mobile devices. In: 14th Pacific conference on computer graphics and applications, pp 76–84Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Lázaro Campoalegre
    • 1
  • Pere Brunet
    • 1
  • Isabel Navazo
    • 1
  1. 1.Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations