Advertisement

Personal and Ubiquitous Computing

, Volume 15, Issue 5, pp 527–537 | Cite as

Brain–computer interfaces for space applications

  • Cristina de NegueruelaEmail author
  • Michael Broschart
  • Carlo Menon
  • José del R. Millán
Original Article

Abstract

Recent experiments have shown the possibility to use the brain electrical activity to directly control the movement of robots. Such a kind of brain–computer interface is a natural way to augment human capabilities by providing a new interaction link with the outside world and is particularly relevant as an aid for paralysed humans, although it also opens up new possibilities in human–robot interaction for able-bodied people. One of these new fields of application is the use of brain–computer interfaces in the space environment, where astronauts are subject to extreme conditions and could greatly benefit from direct mental teleoperation of external semi-automatic manipulators—for instance, mental commands could be sent without any output/latency delays, as it is the case for manual control in microgravity conditions. Previous studies show that there is a considerable potential for this technology onboard spacecraft.

Keywords

BCI Space operations Astronauts 

Abbreviations

AI

Artificial intelligence

ANN

Artificial neural networks

BCI

Brain–computer interface

CNS

Central nervous system

EEG

Electroencephalogram

EVA

Extra-vehicular activity

fMRI

functional magnetic resonance imaging

GCR

Galactic cosmic rays

HDT

Head-down tilt

IDIAP

Institute dalle-molle d’Intelligence artificielle perceptuelle

IVA

Intra-vehicular activity

LEO

Low-earth orbit

MEG

Magneto-encephalography

MMU

Manned manoeuvring unit

PET

Positron emission tomography

SAFER

Simplified aid for EVA rescue

SCR

Solar cosmic radiation

SPE

Solar particles events

SPR

Solar particle radiation

UV

Ultra-violet

References

  1. 1.
    Vidal J (1977) Real-time detection of brain events in EEG. IEEE Proc Special issue on Biological Signal Processing and Analysis 65:633–664Google Scholar
  2. 2.
    Menon C, de Negueruela C, Millán J del R, Tonet O, Carpi F, Broschart M, Ferrez PW, Buttfield A, Dario P, Citi L, Laschi C, Tombini M, Sepulveda F, Poli R, Palaniappan R, Tecchio F, Rossini PM, de Rossi D (2009) Prospects on brain-machine interfaces for space system control. Acta Astronaut 64:448–456. doi: 10.1016/j.actaastro.2008.09.008
  3. 3.
    Chapin JK, Moxon KA, Markowitz RS, Nicolelis MAL (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 2:664–670CrossRefGoogle Scholar
  4. 4.
    Mussallam S, Corneil BD, Greger B, Scherberger H, Andersen RA (2004) Cognitive control signals for neural prosthetics. Science 305(5681):258–262CrossRefGoogle Scholar
  5. 5.
    Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, Dimitrov DF, Patil PG, Henriquez CS, Nicolelis MAL (2003) Learning to control a brain-machine interface for reaching and grasping by primates. PloS Biol 1:193–208CrossRefGoogle Scholar
  6. 6.
    Taylor DM, Helms Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296(5574):1829–1832CrossRefGoogle Scholar
  7. 7.
    Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue J (2002) Instant neural control of a movement signal. Nature 416(6877):141–142CrossRefGoogle Scholar
  8. 8.
    Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW (2004) A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng. 1:63–71CrossRefGoogle Scholar
  9. 9.
    Allison BZ, Pineda JA (2003) ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system. IEEE Trans Neural Sys Rehab Eng 11:110–113CrossRefGoogle Scholar
  10. 10.
    Bayliss JD (2003) Use of the evoked potential P3 component for control in a virtual environment. IEEE Trans Neural Sys Rehab Eng 11:113–116CrossRefGoogle Scholar
  11. 11.
    Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event related brain potentials. Electroenceph Clin Neurophysiol 70:510–523CrossRefGoogle Scholar
  12. 12.
    Gao X, Dingfeng X, Cheng M, Gao S (2003) a BCI-based environmental controller for the motion-disabled. IEEE Trans Neural Sys Rehab Eng 11:137–140CrossRefGoogle Scholar
  13. 13.
    Middendorf M, McMillan G, Calhoun G, Jones KS (2000) Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans Rehab Eng 8:211–214CrossRefGoogle Scholar
  14. 14.
    Sutter EE (1992) The brain response interface: communication through visually-induced electrical brain response. J Microcomput Appl 15:31–45CrossRefGoogle Scholar
  15. 15.
    Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791CrossRefGoogle Scholar
  16. 16.
    Millán J del R, Renkens F, Mouriño J, Gerstner W (2004) Non-invasive brain-actuated control of a mobile robot by human EEG. IEEE Trans Biomed Eng 51:1026–1033CrossRefGoogle Scholar
  17. 17.
    Jasper HA (1958) The ten–twenty system of the international federation. Electroenceph Clin Neurophysiol 10:371–375Google Scholar
  18. 18.
    Jorgensen C, Binsted K (2005) Web browser control using EMG based sub vocal speech recognition. In: Proceedings 38th Hawaii international conference on system sciences (HICS’05): track 9. Integrating humans with intelligent technologies: merging theories of collaborative intelligence and expert cognition. IEEE Computer Society Press, Big Island, pp 294cGoogle Scholar
  19. 19.
    Lenda JA (1978) Manned manoeuvering unit: users guide (Martin Marietta Corp.). Report no: NASA-CR-151864Google Scholar
  20. 20.
    Scoville ZC, Rajula S (2005) SAFER inspection of space shuttle thermal protection system. In: Proceedings of space 2005 (AIAA 2005-6722), Long BeachGoogle Scholar
  21. 21.
    Lujan BF, White RJ (1995) Human physiology in space. NASA Headquarters, WashingtonGoogle Scholar
  22. 22.
    Planel H, Oser H (1984) A survey of space biology and space medicine. ESA Brochure BR-17, European space agency—ESA/ESTEC, NoordwijkGoogle Scholar
  23. 23.
    de Metz K, Quadens O, Ferri R, de Graeve M (1992) The electroencephalogram during parabolic flights. Microgravity science experiments on board caravelle in parabolic flights. In: ESA workshop held at ESTEC, Noordwijk, The Netherlands, on June 25, WPP-466, Oct 1992, pp 92–107Google Scholar
  24. 24.
    Tonet O, Tecchio F, Sepulveda F, Citi L, Tombini M, Marinelli M, Focacci F, Laschi C, Dario P, Rossini PM (2006) Critical review and future perspectives of non-invasive brain-machine interfaces (ESA ariadna study, contract 19707/06/NL/HE—final report). European space agency—ESA/ESTEC, NoordwijkGoogle Scholar
  25. 25.
    Buttfield A, Ferrez PW, Millán J del R (2006) Towards a robust BCI: error potentials and online learning. IEEE Trans Neural Sys Rehab Eng 14(2):164–168CrossRefGoogle Scholar
  26. 26.
    Houston A, Rycroft M (1999) Keys to space—an interdisciplinary approach to space studies. McGraw-Hill, BostonGoogle Scholar
  27. 27.
    Clément G (2005) Fundamentals of space medicine. Microcosm Press, Kluwer Academic Publishers, DordrechtGoogle Scholar
  28. 28.
    McIntyre J, Berthoz A, Lacquaniti F (1998) Reference frames and internal models for visuo-manual coordination: what can we learn from microgravity experiments? Brain Res Brain Res Rev 28(1–2):143–154CrossRefGoogle Scholar
  29. 29.
    Lackner JR, DiZio P (2000) Human orientation and movement control in weightless and artificial gravity environments. Exp Brain Res 130(1):2–26CrossRefGoogle Scholar
  30. 30.
    Horneck G, Facius R, Reichert M, Rettberg P, Seboldt W, Manzey D, Comet B, Maillet A, Preiss H, Schauer L, Dussap CG, Poughon L, Belyavin A, Reitz G, Baumstark-Khan C, Gerzer R (2003) HUMEX, a study on the survivability and adaptation of humans to long-duration exploratory missions. ESA special publication SP-1264, European space agency—ESA/ESTEC, NoordwijkGoogle Scholar
  31. 31.
    NASA (2004) Bioastronautics critical path roadmap (draft). NASA Johnson Space Center, HoustonGoogle Scholar
  32. 32.
    Baumstark-Khan C, Facius R (2002) Life under conditions of ionizing radiation. In: Horneck G, Baumstark-Khan C (eds) Astrobiology: the quest for the conditions of life. Springer, Berlin, pp 260–283Google Scholar
  33. 33.
    Casolino M, Durante M, Mueller-Mellin R, Nieminen P, Reitz G, Shurshakov LV, Sorbi M, Spillantini P (2005) Shielding against cosmic radiation on interplanetary missions. In: Wilson A (ed) ESA SP-1281: topical teams in the life & physical sciences—towards new research activities in space. European Space Agency—ESA/ESTEC, Noordwijk, pp 184–199Google Scholar
  34. 34.
    Stark JPW (2006) The spacecraft environment and its effect on design. In: Fortescue P, Stark JPW, Swinerd G (eds) Spacecraft systems engineering. Wiley & Sons Ltd, London, pp 11–47Google Scholar
  35. 35.
    Narici L, Belli F, Bidoli V, Casolino M, De Pascale MP, Di Fino L, Furano G, Modena I, Morselli A, Picozza P, Reali E, Rinaldi A, Ruggieri D, Sparvoli R, Zaconte V, Sannita WG, Carozzo S, Licoccia S, Romagnoli P, Traversa E, Cotronei V, Vazquez M, Miller J, Salnitskii VP, Shevchenko OI, Petrov VP, Trukhanov KA, Galper A, Khodarovich A, Korotkov MG, Popov A, Vavilov N, Avdeev S, Boezio M, Bonvicini W, Vacchi A, Zampa N, Mazzenga G, Ricci M, Spillantini P, Castellini G, Vittori R, Carlson P, Fuglesang C, Schardt D (2004) The ALTEA/ALTEINO projects: studying functional effects of microgravity and cosmic radiation. Adv Space Res 33(8):1352–1357CrossRefGoogle Scholar
  36. 36.
    Broschart M, de Negueruela C, Millán J del R, Menon C (2007) Augmenting astronaut’s capabilities through brain-machine interfaces. In: Workshop on artificial intelligence for space applications, 20th international joint conference on artificial intelligence (IJCAI). HyderabadGoogle Scholar
  37. 37.
    Horneck G, Baumstark-Khan C, Facius R (2006) Radiation biology. In: Clément G, Slenzka K (eds) Fundamentals of space biology. Microcosm Press & Springer, El Segundo, pp 291–336CrossRefGoogle Scholar
  38. 38.
    Pinsky LS, Osborne WZ, Bailey JV, Benson RE, Thompson LF (1974) Light flashes observed by astronauts on Apollo 11 through Apollo 17. Science 183(4128):957–959CrossRefGoogle Scholar
  39. 39.
    Slenzka K (2003) Neuroplasticity changes during space flight. Adv Space Res 31(6):1595–1604CrossRefGoogle Scholar
  40. 40.
    Nudo RJ, Plautz EJ, Milliken GW (1997) Adaptive plasticity in primate motor cortex as a consequence of behavioral experience and neuronal injury. Semin Neurosci 9(1–2):13–23CrossRefGoogle Scholar
  41. 41.
    Benfenati F (2007) Synaptic plasticity and the neurobiology of learning and memory. Acta Biomed 78(Suppl. 1):58–66Google Scholar
  42. 42.
    Fuijii MD, Patten BM (1992) Neurology of microgravity and space travel. Neurol Clin 10(4):999–1013Google Scholar
  43. 43.
    Moore MM (2003) Real-world applications for brain-computer interface technology. IEEE Trans Neural Syst Rehabil Eng 11(2):162–165CrossRefGoogle Scholar
  44. 44.
    Ferrez PW, Millán J del R (2005) You Are Wrong!—automatic detection of interaction errors from brain waves. In: Proceedings 19th international joint conference on artificial intelligence (ICAJI). EdinburghGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Cristina de Negueruela
    • 1
    • 4
    Email author
  • Michael Broschart
    • 2
    • 4
  • Carlo Menon
    • 3
    • 4
  • José del R. Millán
    • 5
  1. 1.Advanced Space Systems and TechnologiesGMVMadridSpain
  2. 2.Germanischer Lloyd Industrial Services GmbHHamburgGermany
  3. 3.School of Engineering ScienceSimon Fraser UniversityBurnabyCanada
  4. 4.Advanced Concepts Team, European Space AgencyNoordwijkThe Netherlands
  5. 5.Defitech Chair in Non-Invasive Brain-Machine Interface Center for NeuroprostheticsEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations