Personal and Ubiquitous Computing

, Volume 15, Issue 1, pp 61–74

An embedded system for real-time navigation and remote command of a trained canine

  • Winard R. Britt
  • Jeffrey Miller
  • Paul Waggoner
  • David M. Bevly
  • John A. HamiltonJr
Original Article


This paper demonstrates a capability to use a developed embedded sensor suite to consistently track the position, motion behavior, and orientation of a canine. Quantifying and recording canine position and motion in real time provides a useful mechanism for objective analysis of canine trials and missions. We provide a detailed description of the sensor equipment, including the global position satellite (GPS) receiver and antenna, accelerometers, gyroscopes, and magnetometers. Sensors beyond GPS provide for higher frequency readings, a tolerance to GPS loss, and the ability to characterize canine orientation. We demonstrate integrating sensor measurements using an Extended Kalman Filter (EKF) to estimate the canine position and velocity during temporary GPS loss. The system supports the remote actuation of tone and vibration commands and reports commands in real time alongside sensor data. This extends the range at which a handler could monitor a canine and allows enhanced trial analysis using raw sensor data and visualizations. To illustrate the system capabilities, we performed a case study in the remote command and navigation of a trained canine by a professional trainer. The results of this case study are analyzed in terms of canine trial success, motion behavior analysis, and in the context of simulated GPS losses. We discuss other potential applications of the system in autonomous canine command, canine motion analysis, and non-canine applications.


Canine augmentation technology Sensor navigation Sensor aggregation Embedded systems Canine guidance 


  1. 1.
    Bevly DM (1999) Evaluation of a blended dead reckoning and carrier phase differential GPS system for control of an off-road vehicle. In: ION GPS, pp 2061–2069Google Scholar
  2. 2.
    Bevly DM (2004) Global positioning system (GPS): a low-cost velocity sensor for correcting inertial sensor errors on ground vehicles. J Dyn Syst Meas Control 126:255–264CrossRefGoogle Scholar
  3. 3.
    Britt W, Bevly DM, Dozier G (2008) Automated modeling of the guidance of a K-9. In: Proceedings of the American control conference, pp 2467–2474Google Scholar
  4. 4.
    Brown S (2006) Stealth sharks to patrol the high Seas. New Scientist, pp 30–31Google Scholar
  5. 5.
    Bureau of Diplomatic Security: a nose for trouble: how the state department uses bomb detection dogs (2004). Web citation
  6. 6.
    Cornou C, Lundbye-Christensen S (2008) Classifying sows’ activity types from acceleration patterns: an application of the multi-process Kalman filter. Appl Anim Behav Sci 111:262–273CrossRefGoogle Scholar
  7. 7.
    Correll N, Schwager M, Rus D (2008) Social control of herd animals by integration of artificially controlled congeners. In: Proceedings of the 10th international conference on simulation of adaptive behavior (SAB), pp 437–447Google Scholar
  8. 8.
    Curtis P, Cupp D (1989) Dogs on the case: search dogs who help save lives and enforce the law. Lodestar booksGoogle Scholar
  9. 9.
    Daily R, Bevly D (2004) The use of gps for vehicle stability control systems. IEEE Trans Ind Electron 51(2):270–277. doi:10.1109/TIE.2004.824851 CrossRefGoogle Scholar
  10. 10.
    Ferworn A, Sadeghian A, Barnum K, Ostrom D, Rahnama H, Woungang I (2007) Rubble search with canine augmentation technology. In: IEEE international conference on system of systems engineering, 2007. SoSE ’07, pp 1–6. doi:10.1109/SYSOSE.2007.4304328
  11. 11.
    Gabaglio V (2003) GPS/INS integration for pedestrian navigation. Ph.D. thesisGoogle Scholar
  12. 12.
    Gillette RL, Angle TC (2008) Recent developments in canine locomotor analysis: a review. Veterinary J 178:165–176CrossRefGoogle Scholar
  13. 13.
    Godha S (2006) Performance evaluation of low cost MEMS-based IMU integrated with GPS for land vehicle navigation application. Master’s thesisGoogle Scholar
  14. 14.
    Gomes W, Perez D, Catipovic J (2006) Autonomous shark tag with neural reading and stimulation capability for open-ocean experiments. Eos Trans Am Geophys Union 87(36)Google Scholar
  15. 15.
    Hill A, Slamka A, Morton Y, Miller M, Campbell J (2007) A real-time position, velocity, and physiological monitoring and tracking device for equestian and race training. In: Proceedings of the ION GNSSGoogle Scholar
  16. 16.
    Ladetto O, Gabaglio V, Merminod B (2001) Combining gyroscopes, magnetic compass and GPS for pedestrian navigation. In: Proceedings of the international symposium on kinematic systems in geodesy, geomatics, and navigation, pp 205–213Google Scholar
  17. 17.
    Miller J, Bevly DM (2007) Position and orientation determination for a guided K-9. In: Proceedings of the 20th international technical meeting of the satellite division of the institute of navigation ION GNSS 2007, pp 1768–1776Google Scholar
  18. 18.
    Miller J, Bevly DM (2009) Determination of pitch effects in guided K-9 tracking. In: Proceedings of the JSDE/ION JNCGoogle Scholar
  19. 19.
    Miller J, Bevly DM (2009) Guided K-9 tracking improvements using GPS, INS, and magnetometers. In: Proceedings of the ION ITMGoogle Scholar
  20. 20.
    Moreau M, Siebert S, Buerkert A, Schlecht E (2009) Use of a tri-axial accelerometer for automated recording and classification of goats’ grazing behaviour. Appl Animal Behav Sci, In Press, corrected proof. doi: 10.1016/j.applanim.2009.04.008.
  21. 21.
    Rabbit semiconductor: rabbit products. World wide web electronic publication (2008).
  22. 22.
    Ribeiro C, Ferworn A, Denko M, Tran J, Mawson C (2008) Wireless estimation of canine pose for search and rescue. In: System of systems engineering, 2008. SoSE ’08. IEEE international conference on, pp 1–6. doi:10.1109/SYSOSE.2008.4724172
  23. 23.
    Ryu J, Gerdes JC (2004) Integrating inertial sensors with GPS for vehicle control. J Dyn Syst Meas Control 126:243–254CrossRefGoogle Scholar
  24. 24.
    Schwager M, Detweiler C, Vasilescu I, Anderson DM, Rus D (2008) Data-driven identification of group dynamics for motion prediction and control. J Field Robot 25(6–7):305–324CrossRefGoogle Scholar
  25. 25.
    Shandong University of Science and Technology: SDUST created remote-controlled pigeon. World wide web electronic publication (2007).
  26. 26.
    Song W, Chai J, Han T, Yuan K (2006) A remote controlled multimode micro-stimulator for freely moving animals. Acta Physiologica Sinica 58(2):183–188Google Scholar
  27. 27.
    Stengel R (1994) Optimal control and estimation. Dover Publications, New YorkGoogle Scholar
  28. 28.
    Talwar SK, Xu S, Hawley ES, Weiss SA, Moxon KA, Chaplin JK (2002) Rat navigation guided by remote control. Nature 417(2):37–38CrossRefGoogle Scholar
  29. 29.
    Upadhyay T, Cotterhill S, Deaton A (2003) Autonomous GPS/INS navigation experiment for space transfer vehicle. IEEE Trans Aerosp Electron Syst 29:772–785CrossRefGoogle Scholar
  30. 30.
    Watanabe S, Izawa M, Kato A, Ropert-Coudert Y, Naito Y (2005) A new technique for monitoring the detailed behaviour of terrestial animals: a case study with the domestic cat. Appl Animal Behav Sci 94:117–131CrossRefGoogle Scholar
  31. 31.
    XSens: XSens 3D Motion tracking. World wide web electronic publication (2009).

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Winard R. Britt
    • 1
  • Jeffrey Miller
    • 2
  • Paul Waggoner
    • 3
  • David M. Bevly
    • 2
  • John A. HamiltonJr
    • 1
  1. 1.Department of Computer Science and Software Engineering Shelby CenterAuburn UniversityAuburnUSA
  2. 2.Department of Mechanical Engineering Ross HallAuburn UniversityAuburnUSA
  3. 3.Canine and Detection Research InstituteMcClellanUSA

Personalised recommendations