Advertisement

Impact of item density on the utility of visual context in magic lens interactions

  • Michael Rohs
  • Robert Schleicher
  • Johannes Schöning
  • Georg Essl
  • Anja Naumann
  • Antonio Krüger
Original Article

Abstract

This article reports on two user studies investigating the effect of visual context in handheld augmented reality interfaces. A dynamic peephole interface (without visual context beyond the device display) was compared to a magic lens interface (with video see-through augmentation of external visual context). The task was to explore items on a map and look for a specific attribute. We tested different sizes of visual context as well as different numbers of items per area, i.e. different item densities. Hand motion patterns and eye movements were recorded. We found that visual context is most effective for sparsely distributed items and gets less helpful with increasing item density. User performance in the magic lens case is generally better than in the dynamic peephole case, but approaches the performance of the latter the more densely the items are spaced. In all conditions, subjective feedback indicates that participants generally prefer visual context over the lack thereof. The insights gained from this study are relevant for designers of mobile AR and dynamic peephole interfaces, involving spatially tracked personal displays or combined personal and public displays, by suggesting when to use visual context.

Keywords

Magic lens Dynamic peephole Small display Mobile device Camera phone Focus and context display Visual search Eye tracking Saccades Pupil dilation 

Notes

Acknowledgments

We would like to thank Sandra Trösterer from the Center of Human–Machine–Systems, Berlin, for helping us running the first experiment and Ahmad Abbas and Robert Walter (both from the Deutsche Telekom Laboratories, Berlin) for their assistance in data recording and processing.

References

  1. 1.
    Reilly D, Welsman-Dinelle M, Bate C, Inkpen K (2005) Just point and click?: using handhelds to interact with paper maps. In: Proceedings of MobileHCI ’05. ACM Press, New York, pp 239–242Google Scholar
  2. 2.
    Schöning J, Krüger A, Müller HJ (2006) Interaction of mobile camera devices with physical maps. In: Adjunct proceedings of Pervasive’06. Austrian Computer Society (OCG), ViennaGoogle Scholar
  3. 3.
    Rohs M, Schöning J, Krüger A, Hecht B (2007) Towards real-time markerless tracking of magic lenses on paper maps. In: Adjunct proceedings of Pervasive ’07. Austrian Computer Society (OCG), ViennaGoogle Scholar
  4. 4.
    Bier EA, Stone MC, Pier K, Buxton W, DeRose TD (1993) Toolglass and magic lenses: the see-through interface. In: Proceedings of SIGGRAPH ’93. ACM Press, New York, pp 73–80Google Scholar
  5. 5.
    Rohs M, Schöning J, Raubal M, Essl G, Krüger A (2007) Map navigation with mobile devices: virtual versus physical movement with and without visual context. In: Proceedings of ICMI ’07. ACM Press, New YorkGoogle Scholar
  6. 6.
    Mehra S, Werkhoven P, Worring M (2006) Navigating on handheld displays: dynamic versus static peephole navigation. ACM Trans Comput Hum Interact 13(4):448–457CrossRefGoogle Scholar
  7. 7.
    Rekimoto J (1995) The magnifying glass approach to augmented reality systems. In: Proceedings of ICAT/VRST ’95, pp 123–132Google Scholar
  8. 8.
    Yee KP (2003) Peephole displays: pen interaction on spatially aware handheld computers. In: Proceedings of SIGCHI ’03. ACM Press, New York, pp 1–8Google Scholar
  9. 9.
    Fitzmaurice GW (1993) Situated information spaces and spatially aware palmtop computers. Commun ACM 36(7):39–49CrossRefGoogle Scholar
  10. 10.
    Hachet M, Pouderoux J, Guitton P, Gonzato JP (2005) TangiMap: a tangible interface for visualization of large documents on handheld computers. In: Proceedings of GI ’05, pp 9–15. Canadian Human-Computer Communications SocietyGoogle Scholar
  11. 11.
    Baudisch P, Good N, Bellotti V, Schraedley P (2002) Keeping things in context: a comparative evaluation of focus plus context screens, overviews, and zooming. In: Proceedings of CHI ’02. ACM Press, New York, pp 259–266Google Scholar
  12. 12.
    Sanneblad J, Holmquist LE (2006) Ubiquitous graphics: combining hand-held and wall-size displays to interact with large images. In: AVI ’06: Proceedings of the Working Conference on Advanced Visual Interfaces. ACM Press, New York, pp 373–377. http://doi.acm.org/10.1145/1133265.1133343
  13. 13.
    Hecht B, Rohs M, Schöning J, Krüger A (2007) Wikeye—using magic lenses to explore georeferenced Wikipedia content. In: Proceedings of PERMID ’07Google Scholar
  14. 14.
    Ellison A (2008) Are results from different techniques mutually exclusive in the study of how the brain processes visual search? Cortex 44(1):99–101CrossRefGoogle Scholar
  15. 15.
    Thornton TL, Gilden DL (2007) Parallel and serial processes in visual search. Psychol Rev 114(1):71–103CrossRefGoogle Scholar
  16. 16.
    Treisman AM, Gelade G (1980) A feature integration theory of attention. Cogn Psychol 12:97–136CrossRefGoogle Scholar
  17. 17.
    Wolfe JM (1994) Guided search 2.0—a revised model of visual search. Psychon Bull Rev 1(2):202–238Google Scholar
  18. 18.
    Jaschinski W, Heuer H, Kylian H (1998) Preferred position of visual displays relative to the eyes: a field study of visual strain and individual differences. Ergonomics 41(7):1034–1049CrossRefGoogle Scholar
  19. 19.
    Findlay JM, Brown V, Gilchrist ID (2001) Saccade target selection in visual search: the effect of information from the previous fixation. Vis Res 41:87–95CrossRefGoogle Scholar
  20. 20.
    Araujo C, Kowler E, Pavel M (2001) Eye movements during visual search: the costs of choosing the optimal path. Vis Res 41(25–26):3613–25CrossRefGoogle Scholar
  21. 21.
    Abrams RA, Davoli CC, Du F, Knapp WH, r, Paull D (2008) Altered vision near the hands. Cognition 107(3):1035–47Google Scholar
  22. 22.
    Van Orden KF, Limbert W, Makeig S, Jung TP (2001) Eye activity correlates of workload during a visuospatial memory task. Hum Factors 43(1):111–121CrossRefGoogle Scholar
  23. 23.
    Reichenbacher T (2001) Adaptive methods for mobile cartography. J Geogr Sci 11(Suppl 2001):43–55CrossRefGoogle Scholar
  24. 24.
    Kirakowski J, Corbett M (1993) SUMI: the software usability measurement inventory. Br J Educ Technol 24(3):210–212CrossRefGoogle Scholar
  25. 25.
    Porter G, Troscianko T, Gilchrist ID (2007) Effort during visual search and counting: insights from pupillometry. Q J Exp Psychol 60(2):211–229CrossRefGoogle Scholar
  26. 26.
    Wickens CD, Alexander AL, Ambinder MS, Martens M (2004) The role of highlighting in visual search through maps. Spat Vis 17(4–5):373–388CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Michael Rohs
    • 1
  • Robert Schleicher
    • 1
  • Johannes Schöning
    • 2
  • Georg Essl
    • 1
  • Anja Naumann
    • 1
  • Antonio Krüger
    • 2
  1. 1.Deutsche Telekom LaboratoriesTU BerlinBerlinGermany
  2. 2.Institute for GeoinformaticsUniversity of MünsterMünsterGermany

Personalised recommendations