Personal and Ubiquitous Computing

, Volume 10, Issue 4, pp 255–268 | Cite as

Reality mining: sensing complex social systems

Original Article

Abstract

We introduce a system for sensing complex social systems with data collected from 100 mobile phones over the course of 9 months. We demonstrate the ability to use standard Bluetooth-enabled mobile telephones to measure information access and use in different contexts, recognize social patterns in daily user activity, infer relationships, identify socially significant locations, and model organizational rhythms.

Keywords

Mobile phones Bluetooth Complex social systems Wearable computing User modeling 

References

  1. 1.
    Addlesee M, Curwen R, Hodges S, Newman J, Steggles P, Ward A, Hopper A (2001) Implementing a sentient computing system. IEEE Comput Mag 34(8):50–56Google Scholar
  2. 2.
    Ashbrook D, Starner T, (2003) Using GPS to learn significant locations and predict movement across multiple users. Pers Ubiquit Comput 7:275–286CrossRefGoogle Scholar
  3. 3.
    Bar-Noy A, Kessler I (1993) Tracking mobile users in wireless communication networks. IEEE Trans Inform Theory 39(6):1877–1886CrossRefMATHGoogle Scholar
  4. 4.
    Bhattacharya A, Das SK (1999) LeZi-update: an information-theoretic approach to track mobile users in PCS networks. In: Proceedings of the international conference on mobile computing and networking, Seattle, WAGoogle Scholar
  5. 5.
    Begole J, Tang J, Hill R (2003) Rhythm modeling, visualizations and applications. In: Proceedings of the UIST 2003. pp 11–20Google Scholar
  6. 6.
    Choudhury T (2004) Sensing and modeling human networks. Ph. D. Thesis, Program in Media Arts and Sciences, MIT, Cambridge, MAGoogle Scholar
  7. 7.
    Cox D, Kindratenko V, Pointer D (2003) IntelliBadge™: towards providing location-aware value-added services at academic conferences. In: Proceedings of UbiComp 2003, Lect Note Comput Sci 2864:264–280Google Scholar
  8. 8.
    Duda Ro, Hart PE, Stork DG (2001) Pattern classification. Wiley, New YorkGoogle Scholar
  9. 9.
    Eagle N, Pentland A (2005) Social serendipity: mobilizing social software. In: IEEE pervasive computing, special issue: the smart phone, pp 28–34Google Scholar
  10. 10.
    Himberg J, Korpiaho K, Mannila H, Tikanmäki J, Toivonen HTT (2001) Time series segmentation for context recognition in mobile devices. In: Proceedings of the IEEE international conference on data mining (ICDM 2001), San José, pp. 203–210Google Scholar
  11. 11.
    Holmquist LE, Falk J, Wigström J (1999) Supporting group collaboration with inter-personal awareness devices. J Pers Technol 3(1–2)Google Scholar
  12. 12.
    Kim SJ, Lee CY (1996) Modeling and analysis of the dynamic location registration and paging in microcellular systems. IEEE Trans Vehicular Technol 45(1):82–90CrossRefGoogle Scholar
  13. 13.
    Laasonen K, Raento M, Toivonen H (2004) Adaptive on-device location recognition. In: Proceedings for pervasive, pp 287–304Google Scholar
  14. 14.
    Laibowitz M (2004) Parasitic mobility for sensate media, MS Thesis in Media Arts and Sciences, MIT, CambridgeGoogle Scholar
  15. 15.
    LaMarca A, Chawathe Y, Consolvo S, Hightower J, Smith I, Scott J, Sohn T, Howard J, Hughes J, Potter F, Tabert J, Powledge P, Borriello G, Schilit B (2005) Place lab: device positioning using radio beacons in the wild. In: Proceedings of the third international conference on pervasive computing, May 2005Google Scholar
  16. 16.
    Lamming M, Newman W (1992) Activity-based information retrieval: technology in support of personal memory. IFIP Transact A-14:68–81Google Scholar
  17. 17.
    Liao L, Fox D, Kautz H (2004) Learning and inferring transportation routines. In: Proceedings for the national conference on artificial intelligence (AAAI-04), San Jose, CAGoogle Scholar
  18. 18.
    Mäntyjärvi J, Himberg J, Kangas P, Tuomela U, Huuskonen P (2004) Sensor signal data set for exploring context recognition of mobile devices. In: Workshop “Benchmarks and a database for context recognition” in conjunction with the 2nd international conference on pervasive computing (PERVASIVE 2004), April 18–23, Linz/Vienna, AustriaGoogle Scholar
  19. 19.
    Paulos E, Goodman E (2004) The familiar stranger: anxiety, comfort, and play in public places. In: Proceedings of CHI 2004, pp 223–230Google Scholar
  20. 20.
    Raento M, Oulasvirta A, Petit R, Toivonen H (2005) ContextPhone—a prototyping platform for context-aware mobile applications. IEEE Pervasive Comput 4(2):51–59CrossRefGoogle Scholar
  21. 21.
    Roth J, Unger C (2000) Using handheld devices in synchronous collaborative scenarios. In: Proceedings of the second international symposium on handheld and ubiquitous computing (HUC), Bristol, UKGoogle Scholar
  22. 22.
    Schilit B, Adams N, Gold R, Tso M, Want R (1993) The ParcTab mobile computing system. In: Proceedings of the fourth workshop on workstation operating systems, pp 34–39Google Scholar
  23. 23.
    Singh P, Williams W (2003) LifeNet: a propositional model of ordinary human activity. In: Proceedings of the workshop on distributed and collaborative knowledge capture (DC-KCAP) at K-CAP 2003Google Scholar
  24. 24.
    Want R, Hopper A, Falcao V, Gibbons J (1992) The active badge location system. ACM Trans Inform Syst 10:91–102CrossRefGoogle Scholar
  25. 25.
    Wolf J, Guensler R, Bachman W (2001) Elimination of the travel diary: an experiment to derive trip purpose from GPS travel data. In: Proceedings from the transportation research board 80th annual meeting, Washington DCGoogle Scholar
  26. 26.
    Weld D, Anderson C, Domingos P, Etzioni O, Gajos K, Lau T, Wolfman S (2003) Automatically personalizing user interfaces. In: Proceedings of the international joint conference on artificial intelligence (IJCAI03), Acapulco, MexicoGoogle Scholar
  27. 27.
  28. 28.

Copyright information

© Springer-Verlag London Limited 2005

Authors and Affiliations

  1. 1.MIT Media LaboratoryCambridgeUSA

Personalised recommendations