Making data visualization more efficient and effective: a survey
- 53 Downloads
Abstract
Data visualization is crucial in today’s data-driven business world, which has been widely used for helping decision making that is closely related to major revenues of many industrial companies. However, due to the high demand of data processing w.r.t. the volume, velocity, and veracity of data, there is an emerging need for database experts to help for efficient and effective data visualization. In response to this demand, this article surveys techniques that make data visualization more efficient and effective. (1) Visualization specifications define how the users can specify their requirements for generating visualizations. (2) Efficient approaches for data visualization process the data and a given visualization specification, which then produce visualizations with the primary target to be efficient and scalable at an interactive speed. (3) Data visualization recommendation is to auto-complete an incomplete specification, or to discover more interesting visualizations based on a reference visualization.
Keywords
Data visualization Visualization languages Efficient data visualization Data visualization recommendationNotes
Acknowledgements
Funding was provided by 973 Program of China (Grant No. 2015CB358700) and National Natural Science Foundation of China (Grant Nos. 61632016, 61521002, 61661166012).
References
- 1.Michael, B., Vadim, O., Jeffrey, H.: D3: Data-driven documents. TVCG 17(12), 2301–9 (2011)Google Scholar
- 2.Satyanarayan, A., Moritz, D., Wongsuphasawat, K., Heer, J.: Vega-lite: a grammar of interactive graphics. TVCG 23(1), 341–350 (2016)Google Scholar
- 3.Hanrahan, P.: Vizql: a language for query, analysis and visualization. In: SIGMOD, p. 721 (2006)Google Scholar
- 4.Tableau. https://www.tableau.com. Accessed 31 Dec 2018
- 5.Power bi: Interactive data visualization bi tools. https://powerbi.microsoft.com. Accessed 31 Dec 2018
- 6.Hyper: A hybrid oltp and olap high performance dbms. https://hyper-db.de. Accessed 31 Dec 2018
- 7.Neumann, T., Mühlbauer, T., Kemper, A.: Fast serializable multi-version concurrency control for main-memory database systems. In: SIGMOD, pp. 677–689 (2015)Google Scholar
- 8.Neumann, T.: Efficiently compiling efficient query plans for modern hardware. PVLDB 4(9), 539–550 (2011)Google Scholar
- 9.Microsoft excel. https://products.office.com/en-us/excel. Accessed 31 Dec 2018
- 10.Google sheets: Free online spreadsheets for personal use. https://www.google.com/sheets/about/. Accessed 31 Dec 2018
- 11.Oracle data visualization desktop. https://docs.oracle.com/en/middleware/bi/data-visualization-desktop/tutorials.html. Accessed 31 Dec 2018
- 12.Ibm db2. https://www.ibm.com/analytics/db2. Accessed 31 Dec 2018
- 13.Amazon quicksight: Cloud based business intelligence. https://aws.amazon.com/quicksight/. Accessed 31 Dec 2018
- 14.Vega: A visualization grammar. https://vega.github.io/vega/. Accessed 31 Dec 2018
- 15.Wickham, H.: ggplot2–elegant graphics for data analysis. J Comput. Graph. Stat. 19(1), 3–28 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Li, D., Mei, H., Shen, Y., Su, S., Zhang, W., Wang, J., Zu, M., Chen, W.: ECharts: A declarative framework for rapid construction of web-based visualization. Vis. Inform. 2, 136–146 (2018)CrossRefGoogle Scholar
- 17.Luo, Y., Qin, X., Tang, N., Li, G.: DeepEye: towards automatic data visualization. In: ICDE, pp. 101–112 (2018)Google Scholar
- 18.Siddiqui, T., Lee, J., Kim, A., Xue, E., Yu, X., Zou, S., Guo, L., Liu, C., Wang, C., Karahalios, K., Parameswaran, A.G.: Fast-forwarding to desired visualizations with zenvisage. In: CIDR (2017)Google Scholar
- 19.Kalinin, A., Cetintemel, U., Zdonik, S.: Interactive data exploration using semantic windows. In: SIGMOD, pp. 505–516 (2014)Google Scholar
- 20.Stolte, C., Hanrahan, P.: Polaris: a system for query, analysis and visualization of multi-dimensional relational databases. In: INFOVIS, pp. 5–14 (2000)Google Scholar
- 21.Qin, X., Luo, Y., Tang, N., Li, G.: DeepEye: an automatic big data visualization framework. Big Data Min. Anal. 1(1), 75–82 (2018)CrossRefGoogle Scholar
- 22.Vartak, M., Madden, S., Parameswaran, A., Polyzotis, N.: Seedb: automatically generating query visualizations. PVLDB 7(13), 1581–1584 (2014)Google Scholar
- 23.Vartak, M., Rahman, S., Madden, S., Parameswaran, A.G., Polyzotis, N.: SeeDB: efficient data-driven visualization recommendations to support visual analytics. PVLDB 8(13), 2182–2193 (2015)Google Scholar
- 24.Ding, B., Huang, S., Chaudhuri, S., Chakrabarti, K., Wang, C.: Sample + seek: approximating aggregates with distribution precision guarantee. In: SIGMOD, pp. 679–694 (2016)Google Scholar
- 25.Moritz, D., Fisher, D., Ding, B., Wang, C.: Trust, but verify: optimistic visualizations of approximate queries for exploring big data. In: CHI, pp. 2904–2915 (2017)Google Scholar
- 26.Kim, A., Blais, E., Parameswaran, A.G., Indyk, P., Madden, S., Rubinfeld, R.: Rapid sampling for visualizations with ordering guarantees. PVLDB 8(5), 521–532 (2015)Google Scholar
- 27.Fisher, D., Popov, I., Drucker, S., Schraefel, M.: Trust me, i’m partially right: incremental visualization lets analysts explore large datasets faster. In: CHI, pp. 1673–1682 (2012)Google Scholar
- 28.Rahman, S., Aliakbarpour, M., Kong, H.K., Blais, E., Karahalios, K., Parameswaran, A., Rubinfield, R., Rahman, S., Aliakbarpour, M., Kong, H.K.: I’ve seen “enough”: incrementally improving visualizations to support rapid decision making. PVLDB 10(11), 1262–1273 (2017)Google Scholar
- 29.Wesley, R.M.G., Eldridge, M., Terlecki, P.: An analytic data engine for visualization in tableau. In: SIGMOD, pp. 1185–1194 (2011)Google Scholar
- 30.Wang, Z., Ferreira, N., Wei, Y., Bhaskar, A.S., Scheidegger, C.: Gaussian cubes: real-time modeling for visual exploration of large multidimensional datasets. TVCG 23(1), 681–690 (2016)Google Scholar
- 31.Liu, Z., Jiang, B., Heer, J.: imMens: real-time visual querying of big data. In: Eurographics Conference on Visualization, pp. 421–430 (2013)CrossRefGoogle Scholar
- 32.Luo, Y., Qin, X., Tang, N., Li, G., Wang, X.: DeepEye: creating good data visualizations by keyword search. In: SIGMOD, pp. 1733–1736 (2018)Google Scholar
- 33.Wu, E., Psallidas, F., Miao, Z., Zhang, H., Rettig, L.: Combining design and performance in a data visualization management system. In: CIDR (2017)Google Scholar
- 34.Doshi, P.R., Rundensteiner, E.A., Ward, M.O.: Prefetching for visual data exploration. In: DASFAA, pp. 195–202 (2003)Google Scholar
- 35.Moritz, D., Wang, C., Nelson, G.L., Lin, H., Smith, A.M., Howe, B., Heer, J.: Formalizing visualization design knowledge as constraints: actionable and extensible models in draco. TVCG 25(1), 438–448 (2019)Google Scholar
- 36.Siddiqui, T., Kim, A., Lee, J., Karahalios, K., Parameswaran, A.G.: Effortless data exploration with zenvisage: an expressive and interactive visual analytics system. PVLDB 10(4), 457–468 (2016)Google Scholar
- 37.Qin, X., Luo, Y., Tang, N., Li, G.: DeepEye: visualizing your data by keyword search. In: EDBT Vision (2018)Google Scholar
- 38.Seo, J., Shneiderman, B.: A rank-by-feature framework for interactive exploration of multidimensional data. IV 4(2), 96–113 (2005)Google Scholar
- 39.Mackinlay, J.D., Hanrahan, P., Stolte, C.: Show me: automatic presentation for visual analysis. TVCG 13(6), 1137–1144 (2007)Google Scholar
- 40.Wang, Y., Han, F., Zhu, L., Deussen, O., Chen, B.: Line graph or scatter plot? Automatic selection of methods for visualizing trends in time series. TVCG 24(2), 1141–1154 (2018)Google Scholar
- 41.Wongsuphasawat, K., Moritz, D., Anand, A., Mackinlay, J.D., Howe, B., Heer, J.: Voyager: exploratory analysis via faceted browsing of visualization recommendations. TVCG 22(1), 649–658 (2016)Google Scholar
- 42.Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: interactive visual specification of data transformation scripts. In: CHI, pp. 3363–3372 (2011)Google Scholar
- 43.Von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J.J., Fekete, J.-D., Fellner, D.W.: Visual analysis of large graphs: state-of-the-art and future research challenges. Comput. Graph. Forum 30, 1719–1749 (2011)CrossRefGoogle Scholar
- 44.Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation in information visualization: a survey. TVCG 6(1), 24–43 (2000)Google Scholar
- 45.Beck, F., Burch, M., Diehl, S., Weiskopf, D.: A taxonomy and survey of dynamic graph visualization. Comput. Graph. Forum 36(1), 133–159 (2017)CrossRefGoogle Scholar
- 46.Bikakis, N., Sellis, T.: Exploration and visualization in the web of big linked data: a survey of the state of the art. arXiv preprint arXiv:1601.08059 (2016)
- 47.Marie, N., Gandon, F.: Survey of linked data based exploration systems. In: IESD (2014)Google Scholar
- 48.Dadzie, A.-S., Pietriga, E.: Visualisation of linked data-reprise. Semant. Web 8(1), 1–21 (2017)CrossRefGoogle Scholar
- 49.Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology visualization methods’a survey. ACM Comput. Surv. (CSUR) 39(4), 10 (2007)CrossRefGoogle Scholar
- 50.Liu, S., Maljovec, D., Wang, B., Bremer, P.-T., Pascucci, V.: Visualizing high-dimensional data: advances in the past decade. TVCG 3, 1249–1268 (2017)Google Scholar
- 51.Wohlfart, E., Aigner, W., Bertone, A., Miksch, S.: Comparing information visualization tools focusing on the temporal dimensions. In: IV, pp. 69–74 (2008)Google Scholar
- 52.Mei, H., Ma, Y., Wei, Y., Chen, W.: The design space of construction tools for information visualization: A survey. J. Vis. Lang. Comput. 44, 120–132 (2018)CrossRefGoogle Scholar
- 53.Diamond, M., Mattia, A.: Data visualization: an exploratory study into the software tools used by businesses. J. Instr. Pedag. 17, 1–7 (2017)Google Scholar
- 54.Ghosh, A., Nashaat, M., Miller, J., Quader, S., Marston, C.: A comprehensive review of tools for exploratory analysis of tabular industrial datasets. Vis. Inform. 2(4), 235–253 (2018)CrossRefGoogle Scholar
- 55.Keim, D.A., Lee, J.P., Thuraisinghaman, B., Wittenbrink, C.: Database issues for data visualization: supporting interactive database exploration. In: Workshop on Database Issues for Data Visualization, pp. 12–25 (1995)Google Scholar
- 56.Idreos, S., Papaemmanouil, O., Chaudhuri, S.: Overview of data exploration techniques. In: SIGMOD, pp. 277–281 (2015)Google Scholar
- 57.Bikakis, N.: Big data visualization tools. arXiv:1801.08336 (2018)Google Scholar
- 58.Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. TKDE 6, 734–749 (2005)Google Scholar
- 59.Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adapted Interact. 12(4), 331–370 (2002)zbMATHCrossRefGoogle Scholar
- 60.Sharma, L., Gera, A.: A survey of recommendation system: research challenges. IJETT 4(5), 1989–1992 (2013)Google Scholar
- 61.Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl. Based Syst. 46, 109–132 (2013)CrossRefGoogle Scholar
- 62.Christi, J.R., Premkumar, K.: Survey on recommendation and visualization techniques for QoS-aware web services. In: ICICES, pp. 1–6 (2014)Google Scholar
- 63.Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., Ofek-Koifman, S.: Personalized recommendation of social software items based on social relations. In: RecSys, pp. 53–60 (2009)Google Scholar
- 64.Wei, K., Huang, J., Fu, S.: A survey of e-commerce recommender systems. In: ICSSSM, pp. 1–5 (2007)Google Scholar
- 65.Heer, J., Card, S.K., Landay, J.A.: prefuse: a toolkit for interactive information visualization. In: CHI, pp. 421–430 (2005)Google Scholar
- 66.Flare. http://flare.prefuse.org. Accessed 31 Dec 2018
- 67.Bostock, M., Heer, J.: Protovis: a graphical toolkit for visualization. TVCG 15(6), 1121–8 (2009)Google Scholar
- 68.Satyanarayan, A., Russell, R., Hoffswell, J., Heer, J.: Reactive vega: a streaming dataflow architecture for declarative interactive visualization. TVCG 22(1), 659–668 (2015)Google Scholar
- 69.Khan, M., Khan, S.S.: Data and information visualization methods, and interactive mechanisms: a survey. Int. J. Comput. Appl. 34(1), 1–14 (2011)Google Scholar
- 70.Wilkinson, L.: The Grammar of Graphics. Springer, Berlin (2005)zbMATHGoogle Scholar
- 71.Wickham, H.: A layered grammar of graphics. J. Comput. Graph. Stat. 19(1), 3–28 (2010)MathSciNetCrossRefGoogle Scholar
- 72.VanderPlas, J., Granger, B.E., Heer, J., Moritz, D., Wongsuphasawat, K., Satyanarayan, A., Lees, E., Timofeev, I., Welsh, B., Sievert, S.: Altair: interactive statistical visualizations for python. https://altair-viz.github.io. Accessed 31 Dec 2018CrossRefGoogle Scholar
- 73.Echarts. http://echarts.baidu.com. Accessed 31 Dec 2018
- 74.Shneiderman, B.: Direct manipulation: a step beyond programming languages. IEEE Comput. 16(8), 57–69 (1983)CrossRefGoogle Scholar
- 75.Qlik: Data analytics for modern business intelligence. https://www.qlik.com/us. Accessed 31 Dec 2018
- 76.Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R., Shen, W., Goldberg-Kidon, J.: Google fusion tables: web-centered data management and collaboration. In: SIGMOD, pp. 1061–1066 (2010)Google Scholar
- 77.Ren, D., Höllerer, T., Yuan, X.: iVisDesigner: expressive interactive design of information visualizations. TVCG 20(12), 2092–2101 (2014)Google Scholar
- 78.Satyanarayan, A., Heer, J.: Lyra: An interactive visualization design environment. https://idl.cs.washington.edu/projects/lyra/. Accessed 31 Dec 2018
- 79.Yalçın, M.A., Elmqvist, N., Bederson, B.B.: Keshif: Rapid and expressive tabular data exploration for novices. TVCG 24(8), 2339–2352 (2018)Google Scholar
- 80.Liu, Z., Thompson, J., Wilson, A., Dontcheva, M., Delorey, J., Grigg, S., Kerr, B., Stasko, J.: Data illustrator. http://www.zcliu.org/di/. Accessed 31 Dec 2018
- 81.Liu, Z., Thompson, J., Wilson, A., Dontcheva, M., Delorey, J., Grigg, S., Kerr, B., Stasko, J.T.: Data illustrator: Augmenting vector design tools with lazy data binding for expressive visualization authoring. In: CHI, p. 123 (2018)Google Scholar
- 82.Warren, L.: The visual display of quantitative information. Yale J. Biol. Med. 44(4), 400–400 (1986)Google Scholar
- 83.Wongsuphasawat, K., Qu, Z., Moritz, D., Chang, R., Ouk, F., Anand, A., Mackinlay, J.D., Howe, B., Heer, J.: Voyager 2: augmenting visual analysis with partial view specifications. In: CHI, pp. 2648–2659 (2017)Google Scholar
- 84.Key, A., Howe, B., Perry, D., Aragon, C.R.: Vizdeck: self-organizing dashboards for visual analytics. In: SIGMOD, pp. 681–684 (2012)Google Scholar
- 85.Kandel, S., Parikh, R., Paepcke, A., Hellerstein, J.M., Heer, J.: Profiler: integrated statistical analysis and visualization for data quality assessment. In: AVI, pp. 547–554 (2012)Google Scholar
- 86.Elzen, S.V.D., van Wijk, J.J.: Small multiples, large singles: a new approach for visual data exploration. Comput. Graph. Forum 32(3pt2), 191–200 (2013)CrossRefGoogle Scholar
- 87.Wilkinson, L., Anand, A., Grossman, R.: Graph-theoretic scagnostics. In: IEEE Symposium on Information Visualization, 2005. IEEE, Minneapolis, MN, USA (2005)Google Scholar
- 88.Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Trans. Graph. 5(2), 110–141 (1986)CrossRefGoogle Scholar
- 89.Setlur, V., Battersby, S.E., Tory, M., Gossweiler, R., Chang, A.X.: Eviza: A natural language interface for visual analysis. In: UIST, pp. 365–377 (2016)Google Scholar
- 90.Hoque, E., Setlur, V., Tory, M., Dykeman, I.: Applying pragmatics principles for interaction with visual analytics. TVCG 24(1), 309–318 (2017)Google Scholar
- 91.Wu, E., Battle, L., Madden, S.R.: The case for data visualization management systems: vision paper. PVLDB 7(10), 903–906 (2014)Google Scholar
- 92.Wu, E., Psallidas, F., Miao, Z., Zhang, H., Rettig, L., Wu, Y., Sellam, T.: Combining design and performance in a data visualization management system. In: CIDR (2017)Google Scholar
- 93.Lins, L., Klosowski, J.T., Scheidegger, C.: Nanocubes for real-time exploration of spatiotemporal datasets. TVCG 19(12), 2456–2465 (2013)Google Scholar
- 94.Pang, Z., Wu, S., Chen, G., Chen, K., Shou, L.: FlashView: an interactive visual explorer for raw data. PVLDB 10(12), 1869–1872 (2017)Google Scholar
- 95.Zoumpatianos, K., Idreos, S., Palpanas, T.: Indexing for interactive exploration of big data series. In: SIGMOD, pp. 1555–1566 (2014)Google Scholar
- 96.Piringer, H., Tominski, C., Muigg, P., Berger, W.: A multi-threading architecture to support interactive visual exploration. TVCG 15(6), 1113–1120 (2009)Google Scholar
- 97.Chan, S.-M., Xiao, L., Gerth, J., Hanrahan. P.: Maintaining interactivity while exploring massive time series. In: VAST, pp. 59–66 (2008)Google Scholar
- 98.Battle, L., Chang, R., Stonebraker, M.: Dynamic prefetching of data tiles for interactive visualization. In: SIGMOD, pp. 1363–1375 (2016)Google Scholar
- 99.Alabi, D., Wu, E.: PFunk-H: approximate query processing using perceptual models. In: HILDA@SIGMOD, pp. 10–16 (2016)Google Scholar
- 100.Bikakis, N., Papastefanatos, G., Skourla, M., Sellis, T.: A hierarchical aggregation framework for efficient multilevel visual exploration and analysis. Semant. Web 8(1), 139–179 (2017)CrossRefGoogle Scholar
- 101.Elmqvist, N., Fekete, J.D.: Hierarchical aggregation for information visualization: overview, techniques, and design guidelines. TVCG 16(3), 439–454 (2010)Google Scholar
- 102.Pahins, C.A., Stephens, S.A., Scheidegger, C., Comba, J.L.: Hashedcubes: simple, low memory, real-time visual exploration of big data. TVCG 23(1), 671–680 (2016)Google Scholar
- 103.Moritz, D., Howe, B., Heer, J.: Falcon: balancing interactive latency and resolution sensitivity for scalable linked visualizations. In: CHI, p. 694 (2019)Google Scholar
- 104.Tauheed, F., Heinis, T., Shrmann, F., Markram, H., Ailamaki, A.: SCOUT: prefetching for latent feature following queries. PVLDB 5(11), 1531–1542 (2012)Google Scholar
- 105.Yesilmurat, S.: Retrospective adaptive prefetching for interactive web gis applications. Geoinformatica 16(3), 435–466 (2012)CrossRefGoogle Scholar
- 106.Dong, H.L., Kim, J.S., Kim, S.D., Kim, K.C., Yoosung, K., Park, J.: Adaptation of a neighbor selection markov chain for prefetching tiled web GIS data. In: ADVIS, pp. 213–222 (2002)Google Scholar
- 107.Fua, Y.H., Ward, M.O., Rundensteiner, E.A.: Structure-based brushes: a mechanism for navigating hierarchically organized data and information spaces. TVCG 6(2), 150–159 (2000)Google Scholar
- 108.Tao, W., Liu, X., Demiralp, Ç., Chang, R., Stonebraker, M.: Kyrix: Interactive visual data exploration at scale. In: CIDR (2019)Google Scholar
- 109.Broy, M., Denert, E., Bayer, R., McCreight, E.: Organization and maintenance of large ordered indexes. In: Broy, M., Denert, E. (eds.) Software Pioneers. Springer, Berlin, Heidelberg (2002)CrossRefGoogle Scholar
- 110.Wongsuphasawat, K., Moritz, D., Anand, A., Mackinlay, J.D., Howe, B., Heer, J.: Towards a general-purpose query language for visualization recommendation. In: HILDA@SIGMOD, pp. 4–9 (2016)Google Scholar
- 111.Roth, S.F., Kolojejchick, J., Mattis, J., Goldstein, J.: Interactive graphic design using automatic presentation knowledge. In: CHI, p. 207 (1994)Google Scholar
- 112.Casner, S.M.: Task-analytic approach to the automated design of graphic presentations. ACM Trans. Graph. 10(2), 111–151 (1991)CrossRefGoogle Scholar
- 113.Bertin, J.: Semiology of graphics - diagrams, networks, maps. ESRI. ISBN: 978-1-58948-261-6. http://esripress.esri.com/display/index.cfm?fuseaction=display&websiteID=190&moduleID=0 (2010)
- 114.Cleveland, W.S., McGill, R.: Graphical perception: theory, experimentation, and application to the development of graphical methods. ASA 79(387), 531–554 (1984)Google Scholar
- 115.Shepard, R.N.: Toward a universal law of generalization for psychological science. Science 242(4880), 1317–1323 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
- 116.Lewandowsky, Stephan, Spence, Ian: Discriminating strata in scatterplots. ASA 84(407), 682–688 (1989)Google Scholar
- 117.Hu, K.Z., Orghian, D., Hidalgo, C.A.: DIVE: a mixed-initiative system supporting integrated data exploration workflows. In: HILDA@SIGMOD, pp. 5:1–5:7 (2018)Google Scholar
- 118.Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. ASA 74(368), 829–836 (1979)MathSciNetzbMATHGoogle Scholar
- 119.Silverman, B.W.: Density estimation for statistics and data analysis. Springer, pp. 1–158 (1986). https://doi.org/10.1007/978-1-4899-3324-9 zbMATHCrossRefGoogle Scholar
- 120.Dibia, V., Demiralp, Ç.: Data2Vis: Automatic generation of data visualizations using sequence to sequence recurrent neural networks. CoRR, abs/1804.03126 (2018)Google Scholar
- 121.Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 89–96 (2005)Google Scholar
- 122.Herbrich, R., Graepel, T., Obermayer, K.: Support vector learning for ordinal regression. In: ICANN, vol. 1, pp. 97–102 (2002)Google Scholar
- 123.Kim, Y., Heer, J.: Assessing effects of task and data distribution on the effectiveness of visual encodings. Comput. Graph. Forum 37(3), 157–167 (2018)CrossRefGoogle Scholar
- 124.Saket, B., Endert, A., Demiralp, C.: Task-based effectiveness of basic visualizations. TVCG PP(99), 1–1 (2017)Google Scholar
- 125.Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)Google Scholar
- 126.Wu, Q., Burges, C.J., Svore, K.M., Gao, J.: Ranking, boosting, and model adaptation. Technical report, Microsoft Research (2008)Google Scholar
- 127.Epelbaum, T.: Deep learning: technical introduction. CoRR, arXiv:1709.01412 (2017)
- 128.Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. NIPS 4, 3104–3112 (2014)Google Scholar
- 129.Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. Comput. Sci. arXiv preprint arXiv:1409.0473 (2014)
- 130.Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language modeling. In: Interspeech, pp. 601–608 (2012)Google Scholar
- 131.Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
- 132.Poco, J., Heer, J.: Reverse-engineering visualizations: recovering visual encodings from chart images. Comput Graph Forum 36(3), 353–363CrossRefGoogle Scholar
- 133.Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 159–165 (1990)zbMATHGoogle Scholar
- 134.Gotz, D., Wen, Z.: Behavior-driven visualization recommendation. In: IUI, pp. 315–324 (2009)Google Scholar
- 135.Schafer, J.B., Konstan, J., Riedl, J.: Recommender systems in e-commerce. In: World Automation Congress, pp. 158–166 (1999)Google Scholar
- 136.Liu, R.R., Jia, C.X., Zhou, T., Sun, D., Wang, B.H.: Personal recommendation via modified collaborative filtering. Physica A Stat. Mech. Appl. 388(4), 462–468 (2012)CrossRefGoogle Scholar
- 137.Soboroff, I., Nicholas, C.: Combining content and collaboration in text filtering. In: IJCAI, pp. 86–91 (1999)Google Scholar
- 138.Mutlu, B., Veas, E., Trattner, C.: VizRec: recommending personalized visualizations. TIIS 6(4), 31 (2016)CrossRefGoogle Scholar
- 139.Wu, E., Madden, S.R.: Scorpion: explaining away outliers in aggregate queries. In: PVLDB, pp. 553–564 (2013)CrossRefGoogle Scholar
- 140.Song, H., Szafir, D.A.: Where’s my data? Evaluating visualizations with missing data. IEEE Trans. Vis. Comput. Graph. 25(1), 914–924 (2019)CrossRefGoogle Scholar
- 141.Battle, L., Angelini, M., Binnig, C., Catarci, T., Eichmann, P., Fekete, J., Santucci, G., Sedlmair, M., Willett, W.: Evaluating visual data analysis systems: a discussion report. In: HILDA@SIGMOD, pp. 4:1–4:6 (2018)Google Scholar
- 142.Battle, L., Chang, R., Heer, J., Stonebraker, M.: Position statement: the case for a visualization performance benchmark. In: DSIA, pp. 1–5 (2017)Google Scholar
- 143.Jiang, L., Rahman, P., Nandi, A.: Evaluating interactive data systems: workloads, metrics, and guidelines. In: SIGMOD, pp. 1637–1644 (2018)Google Scholar
- 144.Hu, K.Z., Gaikwad, S.N.S., Hulsebos, M., Bakker, M.A., Zgraggen, E., Hidalgo, C.A., Kraska, T., Li, G., Satyanarayan, A., Demiralp, Ç.: Viznet: Towards A large-scale visualization learning and benchmarking repository. In: CHI, pp. 662 (2019)Google Scholar
- 145.Valizadegan, H., Jin, R., Zhang, R., Mao, J.: Learning to rank by optimizing NDCG measure. In: NIPS, pp. 1883–1891 (2009)Google Scholar
- 146.Rezig, E.K., Cao, L., Stonebraker, M., Simonini, G., Tao, W., Madden, S., Ouzzani, M., Tang, N., Elmagarmid, A.K.: Data civilizer 2.0: a holistic framework for data preparation and analytics. PVLDB 12(12), 1954–1957 (2019)Google Scholar
- 147.Rezig, E.K., Cao, L., Simonini, G., Schoemans, M., Madden, S., Ouzzani, M., Tang, N., Stonebraker, M.: Dagger: a data (not code) debugger. In: CIDR (2020)Google Scholar