# Scalable algorithms for signal reconstruction by leveraging similarity joins

- 17 Downloads

## Abstract

Signal reconstruction problem (SRP) is an important optimization problem where the objective is to identify a solution to an underdetermined system of linear equations that is closest to a given prior. It has a substantial number of applications in diverse areas including network traffic engineering, medical image reconstruction, acoustics, astronomy and many more. Most common approaches for SRP do not scale to large problem sizes. In this paper, we propose multiple optimization steps, developing scalable algorithms for the problem. We first propose a dual formulation of the problem and develop the Direct algorithm that is significantly more efficient than the state of the art. Second, we show how adapting database techniques developed for scalable similarity joins provides a significant speedup over Direct, scaling our proposal up to large-scale settings. Third, we describe a number of practical techniques that allow our algorithm to scale to settings of size in the order of *a million by a billion*. We also adapt our proposal to identify the top-*k* components of the solved system of linear equations. Finally, we consider the dynamic setting where the inputs to the linear system change and propose efficient algorithms inspired by the database techniques of materialization and reuse. Extensive experiments on real-world and synthetic data confirm the efficiency, effectiveness and scalability of our proposal.

## Keywords

Signal reconstruction Traffic reconstruction Underdetermined systems Scalable algorithm## Notes

### Funding

This paper was supported in part by AT&T and National Science Foundation (Grant No. 1343976, 1443858, 1624074, and 1760059).

## Supplementary material

## References

- 1.Beyer, K., Gemulla, R., Haas, P.J., Reinwald, B., Sismanis, Y.: Distinct-value synopses for multiset operations. Commun. ACM
**52**(10), 87–95 (2009)CrossRefGoogle Scholar - 2.Bjerhammar, A.: Application of Calculus of Matrices to Method of Least Squares: With Special Reference to Geodetic Calculations. Elander, Göteborg (1951)zbMATHGoogle Scholar
- 3.Boehm, M., Dusenberry, M.W., Eriksson, D., Evfimievski, A.V., Manshadi, F.M., Pansare, N., Reinwald, B., Reiss, F.R., Sen, P., Surve, A.C., et al.: SystemML: declarative machine learning on spark. PVLDB
**9**(13), 1425–1436 (2016)Google Scholar - 4.Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
- 5.Broder, A.Z.: On the resemblance and containment of documents. In: Proceedings on Compression and Complexity of Sequences 1997, pp. 21–29 (1997)Google Scholar
- 6.Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math.
**59**(8), 1207–1223 (2006)MathSciNetCrossRefzbMATHGoogle Scholar - 7.Cao, J., Davis, D., Vander Wiel, S., Yu, B.: Time-varying network tomography: router link data. J. Am. Stat. Assoc.
**95**(452), 1063–1075 (2000)MathSciNetCrossRefzbMATHGoogle Scholar - 8.Chandrasekaran, B.: Survey of Network Traffic Models, vol. 567. Washington University, St. Louis CSE (2009)Google Scholar
- 9.Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for similarity joins in data cleaning. In: ICDE (2006)Google Scholar
- 10.Cohen, E., Kaplan, H.: Tighter estimation using bottom k sketches. PVLDB
**1**(1), 213–224 (2008)Google Scholar - 11.Cormode, G., Korn, F., Muthukrishnan, S., Srivastava, D.: Finding hierarchical heavy hitters in data streams. In: Proceedings of the 29th International Conference on Very Large Data Bases, vol. 29, pp. 464–475. VLDB Endowment (2003)Google Scholar
- 12.Craig, I.J., Brown, J.C.: Inverse problems in astronomy: a guide to inversion strategies for remotely sensed data. In: Research Supported by SERC. Adam Hilger, Ltd., Bristol and Boston (1986)Google Scholar
- 13.Dasu, T., Johnson, T., Muthukrishnan, S., Shkapenyuk, V.: Mining database structure; or, how to build a data quality browser. In: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, pp. 240–251. ACM (2002)Google Scholar
- 14.Ding, B., König, A.C.: Fast set intersection in memory. PVLDB
**4**(4), 255–266 (2011)Google Scholar - 15.Dokmanić, I., Gribonval, R.: Beyond Moore–Penrose part II: the sparse pseudoinverse (2017). arXiv:1706.08701
- 16.Erdos, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci.
**5**(1), 17–60 (1960)MathSciNetzbMATHGoogle Scholar - 17.Fortz, B., Thorup, M.: Optimizing OSPF/IS-IS weights in a changing world. IEEE J. Sel. Areas Commun.
**20**(4), 756–767 (2002)CrossRefGoogle Scholar - 18.Ge, D., Jiang, X., Ye, Y.: A note on the complexity of \(L_p\) minimization. Math. Program.
**129**(2), 285–299 (2011)MathSciNetCrossRefzbMATHGoogle Scholar - 19.Goldschmidt, O.: ISP backbone traffic inference methods to support traffic engineering. In: Internet Statistics and Metrics Analysis (ISMA) Workshop, pp. 1063–1075 (2000)Google Scholar
- 20.Gong, Y.: Identifying P2P users using traffic analysis (2005). www.symantec.com/connect/articles/identifying-p2p-users-using-traffic-analysis. Accessed 21 May 2007
- 21.Gordon, J.: Pareto process as a model of self-similar packet traffic. In: Global Telecommunications Conference, 1995 (GLOBECOM’95) vol. 3, pp. 2232–2236 (1995)Google Scholar
- 22.Grangeat, P., Amans, J.L.: Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, vol. 4. Springer, Berlin (2013) Google Scholar
- 23.Hadjieleftheriou, M., Yu, X., Koudas, N., Srivastava, D.: Hashed samples: selectivity estimators for set similarity selection queries. PVLDB
**1**(1), 201–212 (2008)Google Scholar - 24.Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia (1998)CrossRefGoogle Scholar
- 25.Hasani, S., Thirumuruganathan, S., Asudeh, A., Koudas, N., Das, G.: Efficient construction of approximate ad-hoc ML models through materialization and reuse. Proc. VLDB Endow.
**11**(11), 1468–1481 (2018)CrossRefGoogle Scholar - 26.Hrinivich, W.T., Hoover, D.A., Surry, K., Edirisinghe, C., D’Souza, D., Fenster, A., Wong, E.: Ultrasound guided high-dose-rate prostate brachytherapy: live needle segmentation and 3d image reconstruction using the sagittal transducer. Brachytherapy
**15**, S195 (2016)CrossRefGoogle Scholar - 27.Kaoudi, Z., Quiané-Ruiz, J.A., Thirumuruganathan, S., Chawla, S., Agrawal, D.: A cost-based optimizer for gradient descent optimization. In: Proceedings of the 2017 ACM International Conference on Management of Data, pp. 977–992. ACM (2017)Google Scholar
- 28.Kim, Y., Nelson, P.: Optimal regularisation for acoustic source reconstruction by inverse methods. J. Sound Vib.
**275**(3), 463–487 (2004)CrossRefGoogle Scholar - 29.Kleinrock, L., Kamoun, F.: Hierarchical routing for large networks performance evaluation and optimization. Comput. Netw.
**1**(3), 155–174 (1977)MathSciNetzbMATHGoogle Scholar - 30.Kumar, A., Naughton, J., Patel, J.M., Zhu, X.: To join or not to join? Thinking twice about joins before feature selection. In: Proceedings of the 2016 International Conference on Management of Data, pp. 19–34. ACM (2016)Google Scholar
- 31.Lagrange, J.L.: Mécanique Analytique, vol. 1. Mallet-Bachelier, Paris (1853)Google Scholar
- 32.Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 631–636. ACM (2006)Google Scholar
- 33.Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 177–187. ACM (2005)Google Scholar
- 34.McMahan, B., Ramage, D.: Federated learning: collaborative machine learning without centralized training data. Technical report, Google (2017)Google Scholar
- 35.Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S., Diot, C.: Traffic matrix estimation: existing techniques and new directions. ACM SIGCOMM Comput. Commun. Rev.
**32**(4), 161–174 (2002)CrossRefGoogle Scholar - 36.Moors, E.: On the reciprocal of the general algebraic matrix (abstract). Bull. Am. Math. Soc.
**26**, 394–395 (1920)Google Scholar - 37.Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal.
**26**(3), 301–321 (2009)MathSciNetCrossRefzbMATHGoogle Scholar - 38.Nunes, B.A.A., Mendonca, M., Nguyen, X.N., Obraczka, K., Turletti, T.: A survey of software-defined networking: past, present, and future of programmable networks. IEEE Commun. Surv. Tutor.
**16**(3), 1617–1634 (2014)CrossRefGoogle Scholar - 39.Penrose, R.: A generalized inverse for matrices. In: Mathematical proceedings of the Cambridge philosophical society, vol. 51, pp. 406–413. Cambridge University Press, Cambridge (1955)Google Scholar
- 40.Tebaldi, C., West, M.: Bayesian inference on network traffic using link count data. J. Am. Stat. Assoc.
**93**(442), 557–573 (1998)MathSciNetCrossRefzbMATHGoogle Scholar - 41.Trefethen, L.N., Bau III, D.: Numerical linear algebra. Society for Industrial and Applied Mathematics, Philadelphia. Technical report, ISBN 978-0-89871-361-9 (1997)Google Scholar
- 42.Tsirogiannis, D., Guha, S., Koudas, N.: Improving the performance of list intersection. PVLDB
**2**(1), 838–849 (2009)Google Scholar - 43.Tune, P., Roughan, M.: Maximum entropy traffic matrix synthesis. In: ACM SIGMETRICS Performance Evaluation Review vol. 42(2), pp. 43–45 (2014)Google Scholar
- 44.Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)CrossRefzbMATHGoogle Scholar
- 45.Zhang, C., Kumar, A., Ré, C.: Materialization optimizations for feature selection workloads. ACM Trans. Datab. Syst. (TODS)
**41**(1), 2 (2016)MathSciNetGoogle Scholar - 46.Zhang, Y., Roughan, M., Duffield, N., Greenberg, A.: Fast accurate computation of large-scale IP traffic matrices from link loads. In: ACM SIGMETRICS Performance Evaluation Review, vol. 31, pp. 206–217. ACM (2003)Google Scholar
- 47.Zhang, Y., Roughan, M., Lund, C., Donoho, D.: An information-theoretic approach to traffic matrix estimation. In: Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications, pp. 301–312. ACM (2003)Google Scholar