A survey of community search over big graphs

  • Yixiang FangEmail author
  • Xin Huang
  • Lu Qin
  • Ying Zhang
  • Wenjie Zhang
  • Reynold Cheng
  • Xuemin Lin
Special Issue Paper


With the rapid development of information technologies, various big graphs are prevalent in many real applications (e.g., social media and knowledge bases). An important component of these graphs is the network community. Essentially, a community is a group of vertices which are densely connected internally. Community retrieval can be used in many real applications, such as event organization, friend recommendation, and so on. Consequently, how to efficiently find high-quality communities from big graphs is an important research topic in the era of big data. Recently, a large group of research works, called community search, have been proposed. They aim to provide efficient solutions for searching high-quality communities from large networks in real time. Nevertheless, these works focus on different types of graphs and formulate communities in different manners, and thus, it is desirable to have a comprehensive review of these works. In this survey, we conduct a thorough review of existing community search works. Moreover, we analyze and compare the quality of communities under their models, and the performance of different solutions. Furthermore, we point out new research directions. This survey does not only help researchers to have better understanding of existing community search solutions, but also provides practitioners a better judgment on choosing the proper solutions.


Community search Community retrieval Big graph Graph queries Online queries 



We would like to thank Jiafeng Hu and Kai Wang for their helpful discussions, Dan Yin for the proof-reading, and Jinbin Huang for conducting experimental comparisons. Xin Huang is supported by the NSFC Project No. 61702435, and Hong Kong General Research Fund (GRF) Project No. HKBU 12200917. Lu Qin is supported by DP160101513. Ying Zhang is supported by FT170100128 and DP180103096. Wenjie Zhang is supported by DP180103096. Reynold Cheng is supported by the Research Grants Council of Hong Kong (RGC Projects HKU 17229116 and 17205115) and HKU (Projects 102009508 and 104004129). Xuemin Lin is supported by 2019DH0ZX01, 2018YFB1003504, NSFC61232006, DP180103096, and DP170101628.


  1. 1.
    Amazon mechanical turk.
  2. 2.
  3. 3.
    Acquisti, A., Gross, R.: Imagined communities: awareness, information sharing, and privacy on the facebook. In: International Workshop on Privacy Enhancing Technologies, pp. 36–58 (2006)Google Scholar
  4. 4.
    Adamcsek, B., Palla, G., Farkas, I.J., Derényi, I., Vicsek, T.: Cfinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22(8), 1021–1023 (2006)CrossRefGoogle Scholar
  5. 5.
    Afrati, F.N., Fotakis, D., Ullman, J.D.: Enumerating subgraph instances using map-reduce. In: ICDE, pp. 62–73. IEEE (2013)Google Scholar
  6. 6.
    Akbas, E., Zhao, P.: Truss-based community search: a truss-equivalence based indexing approach. PVLDB 10(11), 1298–1309 (2017)Google Scholar
  7. 7.
    Akiba, T., Iwata, Y., Yoshida, Y.: Linear-time enumeration of maximal k-edge-connected subgraphs in large networks by random contraction. In: CIKM, pp. 909–918 (2013)Google Scholar
  8. 8.
    Amelio, A., Pizzuti, C.: Overlapping community discovery methods: A survey. In: Social Networks: Analysis and Case Studies, pp. 105–125 (2014)Google Scholar
  9. 9.
    Andersen, R., Lang, K.J.: Communities from seed sets. In: WWW, pp. 223–232 (2006)Google Scholar
  10. 10.
    Angadi, A., Varma, P.S.: Overlapping community detection in temporal networks. Indian J. Sci. Technol. 8(31), 1–6 (2015)CrossRefGoogle Scholar
  11. 11.
    Archer, A., Lattanzi, S., Likarish, P., Vassilvitskii, S.: Indexing public-private graphs. In: WWW, pp. 1461–1470 (2017)Google Scholar
  12. 12.
    Armenatzoglou, N., Papadopoulos, S., Papadias, D.: A general framework for geo-social query processing. PVLDB 6(10), 913–924 (2013)Google Scholar
  13. 13.
    Baeza-Yates, R., Hurtado, C., Mendoza, M. : Query recommendation using query logs in search engines. In: International Conference on Extending Database Technology, pp. 588–596. Springer (2004)Google Scholar
  14. 14.
    Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network analysis: the maximum k-plex problem. Oper. Res. 59(1), 133–142 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Barbieri, N., Bonchi, F., Galimberti, E., Gullo, F.: Efficient and effective community search. DMKD 29(5), 1406–1433 (2015)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Barthélemy, M.: Spatial networks. Phys. Rep. 499(1), 1–101 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks. arXiv:cs/0310049 (2003)
  18. 18.
    Batarfi, O., Shawi, R.E., Fayoumi, A.G., Nouri, R., Beheshti, S.-M.-R., Barnawi, A., Sakr, S.: Large scale graph processing systems: survey and an experimental evaluation. Clust. Comput. 18(3), 1189–1213 (2015)CrossRefGoogle Scholar
  19. 19.
    Bazzi, M., Porter, M.A., Williams, S., McDonald, M., Fenn, D.J., Howison, S.D.: Community detection in temporal multilayer networks, with an application to correlation networks. Multiscale Model. Simul. 14(1), 1–41 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword searching and browsing in databases using banks. In: ICDE, pp. 431–440. IEEE (2002)Google Scholar
  21. 21.
    Bi, F., Chang, L., Lin, X., Zhang, W.: An optimal and progressive approach to online search of top-k influential communities. PVLDB 11(9), 1056–1068 (2018)Google Scholar
  22. 22.
    Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. Comput. Netw. 33(1–6), 309–320 (2000)CrossRefGoogle Scholar
  23. 23.
    Brunato, M., Hoos, H. H., Battiti, R.: On effectively finding maximal quasi-cliques in graphs. In: International Conference on Learning and Intelligent Optimization, pp. 41–55 (2007)Google Scholar
  24. 24.
    Cai, L., Meng, T., He, T., Chen, L., Deng, Z.: K-hop community search based on local distance dynamics. In: International Conference on Neural Information Processing, pp. 24–34 (2017)Google Scholar
  25. 25.
    Chang, L., Lin, X., Qin, L., Yu, J. X., Zhang, W.: Index-based optimal algorithms for computing Steiner components with maximum connectivity. In: SIGMOD, pp. 459–474 (2015)Google Scholar
  26. 26.
    Chang, L., Yu, J. X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: SIGMOD, pp. 205–216 (2013)Google Scholar
  27. 27.
    Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: International Workshop on Approximation Algorithms for Combinatorial Optimization, pp. 84–95 (2000)Google Scholar
  28. 28.
    Chen, L., Liu, C., Zhou, R., Li, J., Yang, X., Wang, B.: Maximum co-located community search in large scale social networks. PVLDB 11(10), 1233–1246 (2018)Google Scholar
  29. 29.
    Chen, P.-L., Chou, C.-K., Chen, M.-S. : Distributed algorithms for k-truss decomposition. In: International Conference on Big Data, pp. 471–480 (2014)Google Scholar
  30. 30.
    Chen, S., Wei, R., Popova, D., Thomo, A.: Efficient computation of importance based communities in web-scale networks using a single machine. In: CIKM, pp. 1553–1562 (2016)Google Scholar
  31. 31.
    Chen, Y., Fang, Y., Cheng, R., Li, Y., Chen, X., Zhang, J.: Exploring communities in large profiled graphs. TKDE 31(8), 1624–1629 (2019)Google Scholar
  32. 32.
    Chen, Y., Xu, J., Xu, M.: Finding community structure in spatially constrained complex networks. Int. J. Geogr. Inf. Sci. 29(6), 889–911 (2015)CrossRefGoogle Scholar
  33. 33.
    Cheng, H., Zhou, Y., Huang, X., Yu, J.X.: Clustering large attributed information networks: an efficient incremental computing approach. Data Min. Knowl. Discov. 25(3), 450–477 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive networks. In: ICDE, pp. 51–62 (2011)Google Scholar
  35. 35.
    Cheng, J., Zeng, X., Yu, J. X.: Top-k graph pattern matching over large graphs. In: ICDE, pp. 1033–1044. IEEE (2013)Google Scholar
  36. 36.
    Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maximal clique enumeration with limited memory. In: SIGKDD, pp. 1240–1248 (2012)Google Scholar
  37. 37.
    Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Chierichetti, F., Epasto, A., Kumar, R., Lattanzi, S., Mirrokni, V.: Efficient algorithms for public-private social networks. In: SIGKDD, pp. 139–148. ACM (2015)Google Scholar
  39. 39.
    Chu, S., Cheng, J.: Triangle listing in massive networks and its applications. In: SIGKDD, pp. 672–680. ACM (2011)Google Scholar
  40. 40.
    Clauset, A.: Finding local community structure in networks. Phys. Rev. E 72(2), 026132 (2005)CrossRefGoogle Scholar
  41. 41.
    Cohen, J.: Trusses: cohesive subgraphs for social network analysis. Natl. Secur. Agency Tech. Rep. 16, 3 (2008)Google Scholar
  42. 42.
    Conte, A., De Matteis, T., De Sensi, D., Grossi, R., Marino, A., Versari, L.: D2k: scalable community detection in massive networks via small-diameter k-plexes. In: SIGKDD, pp. 1272–1281 (2018)Google Scholar
  43. 43.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM (1971)Google Scholar
  44. 44.
    Coscia, M., Giannotti, F., Pedreschi, D.: A classification for community discovery methods in complex networks. Stat. Anal. Data Min. 4(5), 512–546 (2011)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Cui, W., Xiao, Y., Wang, H., Lu, Y., Wang, W.: Online search of overlapping communities. In: SIGMOD, pp. 277–288 (2013)Google Scholar
  46. 46.
    Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large graphs. In: SIGMOD, pp. 991–1002 (2014)Google Scholar
  47. 47.
    Danisch et al, M.: Listing k-cliques in sparse real-world graphs. In: WWW, pp. 589–598 (2018)Google Scholar
  48. 48.
    Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech. Theory Exp. 2005(09), P09008 (2005)zbMATHCrossRefGoogle Scholar
  49. 49.
    Ding, B., Yu, J. X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost connected trees in databases. In: ICDE (2007)Google Scholar
  50. 50.
    Ding, L., Xie, Y., Shan, X., Song, B.: Search of center-core community in large graphs. In: CCF Conference on Big Data, pp. 94–107 (2018)Google Scholar
  51. 51.
    DiTursi, D. J., Ghosh, G., Bogdanov, P.: Local community detection in dynamic networks. arXiv preprint arXiv:1709.04033 (2017)
  52. 52.
    Edachery, J., Sen, A., Brandenburg, F.J.: Graph clustering using distance-k cliques. In: Proceedings of the 7th International Symposium on Graph Drawing, pp. 98–106 (1999)Google Scholar
  53. 53.
    Elzinga, J., Hearn, D.W.: Geometrical solutions for some minimax location problems. Transp. Sci. 6(4), 379–394 (1972)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Expert, P., et al.: Uncovering space-independent communities in spatial networks. Proc. Natl. Acad. Sci. USA 108(19), 7663–7668 (2011)zbMATHCrossRefGoogle Scholar
  55. 55.
    Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph pattern matching: from intractable to polynomial time. PVLDB 3(1–2), 264–275 (2010)Google Scholar
  56. 56.
    Fan, W., Wang, X., Wu, Y., Xu, J.: Association rules with graph patterns. PVLDB 8(12), 1502–1513 (2015)Google Scholar
  57. 57.
    Fang, Y., Cheng, R.: On attributed community search. In: International Workshop on Mobility Analytics for Spatio-temporal and Social Data, PVLDB, pp. 1–21 (2017)Google Scholar
  58. 58.
    Fang, Y., Cheng, R., Chen, Y., Luo, S., Hu, J.: Effective and efficient attributed community search. VLDB J. 26(6), 803–828 (2017)CrossRefGoogle Scholar
  59. 59.
    Fang, Y., Cheng, R., Cong, G., Mamoulis, N., Li, Y.: On spatial pattern matching. In: ICDE, pp. 293–304 (2018)Google Scholar
  60. 60.
    Fang, Y., Cheng, R., Li, X., Luo, S., Hu, J.: Effective community search over large spatial graphs. PVLDB 10(6), 709–720 (2017)Google Scholar
  61. 61.
    Fang, Y., Cheng, R., Luo, S., Hu, J.: Effective community search for large attributed graphs. PVLDB 9(12), 1233–1244 (2016)Google Scholar
  62. 62.
    Fang, Y., Cheng, R., Luo, S., Hu, J., Huang, K.: C-explorer: browsing communities in large graphs. PVLDB 10(12), 1885–1888 (2017)Google Scholar
  63. 63.
    Fang, Y., Cheng, R., Tang, W., Maniu, S., Yang, X.: Scalable algorithms for nearest-neighbor joins on big trajectory data. TKDE 28(3), 785–800 (2016)Google Scholar
  64. 64.
    Fang, Y., Cheng, R., Wang, J., Budiman, L., Cong, G., Mamoulis, N.: Spacekey: exploring patterns in spatial databases. In: ICDE, pp. 1577–1580 (2018)Google Scholar
  65. 65.
    Fang, Y., Wang, Z., Cheng, R., Li, X., Luo, S., Hu, J., Chen, X.: On spatial-aware community search. TKDE 31(4), 783–798 (2019)Google Scholar
  66. 66.
    Fang, Y., Wang, Z., Cheng, R., Wang, H., Hu, J.: Effective and efficient community search over large directed graphs. In: TKDE, p. 1 (2018)Google Scholar
  67. 67.
    Fang, Y., Yu, K., Cheng, R., Lakshmanan, L.V., Lin, X.: Efficient algorithms for densest subgraph discovery. In: PVLDB (2019)Google Scholar
  68. 68.
    Fang, Y., Zhang, H., Ye, Y., Li, X.: Detecting hot topics from twitter: a multiview approach. J. Inf. Sci. 40(5), 578–593 (2014)CrossRefGoogle Scholar
  69. 69.
    Fei Fan, W., Wang, X., Wu, Y.: Expfinder: finding experts by graph pattern matching. In: ICDE, pp. 1316–1319. IEEE (2013)Google Scholar
  70. 70.
    Flake, G.W., Lawrence, S., Giles, C.L. : Efficient identification of web communities. In: SIGKDD, pp. 150–160 (2000)Google Scholar
  71. 71.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. In: STOC, pp. 246–251 (1983)Google Scholar
  73. 73.
    Galbrun, E., Gionis, A., Tatti, N.: Top-k overlapping densest subgraphs. Data Min. Knowl. Discov. 30(5), 1134–1165 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  75. 75.
    Giatsidis, C., Thilikos, D. M., Vazirgiannis, M.: D-cores: measuring collaboration of directed graphs based on degeneracy. In: ICDM, pp. 201–210 (2011)Google Scholar
  76. 76.
    Gibbons, A.: Algorithmic Graph Theory. Cambridge University Press, Cambridge (1985)zbMATHGoogle Scholar
  77. 77.
    Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Goldberg, A.V.: Finding a Maximum Density Subgraph. University of California, Berkeley (1984)Google Scholar
  79. 79.
    Golenberg, K., Kimelfeld, B., Sagiv, Y.: Keyword proximity search in complex data graphs. In: SIGMOD, pp. 927–940. ACM (2008)Google Scholar
  80. 80.
    Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.: Graphx: graph processing in a distributed dataflow framework. OSDI 14, 599–613 (2014)Google Scholar
  81. 81.
    Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys. 12(10), 103018 (2010)CrossRefGoogle Scholar
  82. 82.
    Guimera, R., Amaral, L.A.N.: Functional cartography of complex metabolic networks. Nature 433(7028), 895 (2005)CrossRefGoogle Scholar
  83. 83.
    Gulbahce, N., Lehmann, S.: The art of community detection. BioEssays 30(10), 934–938 (2008)CrossRefGoogle Scholar
  84. 84.
    Guo, D.: Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP). Int. J. Geogr. Inf. Sci. 22(7), 801–823 (2008)CrossRefGoogle Scholar
  85. 85.
    Guo, T., Cao, X., Cong, G.: Efficient algorithms for answering the m-closest keywords query. In: SIGMOD, pp. 405–418 (2015)Google Scholar
  86. 86.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching, volume 14 (1984)Google Scholar
  87. 87.
    Hajibagheri, A., Alvari, H., Hamzeh, A., Hashemi, S.: Community detection in social networks using information diffusion. In: ASONAM, pp. 702–703 (2012)Google Scholar
  88. 88.
    Harenberg, S., Bello, G., Gjeltema, L., Ranshous, S., Harlalka, J., Seay, R., Padmanabhan, K., Samatova, N.: Community detection in large-scale networks: a survey and empirical evaluation. Wiley Interdiscip. Rev. Comput. Stat. 6(6), 426–439 (2014)CrossRefGoogle Scholar
  89. 89.
    Hastings, M.B.: Community detection as an inference problem. Phys. Rev. E 74(3), 035102 (2006)CrossRefGoogle Scholar
  90. 90.
    He, H., Wang, H., Yang, J., Yu, P. S.: Blinks: ranked keyword searches on graphs. In: SIGMOD, pp. 305–316. ACM (2007)Google Scholar
  91. 91.
    Henderson, K., Eliassi-Rad, T., Papadimitriou, S., Faloutsos, C.: HCDF: a hybrid community discovery framework. In: SDM, pp. 754–765 (2010)Google Scholar
  92. 92.
    Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms (1983)Google Scholar
  93. 93.
    Hu, J., Cheng, R., Chang, K. C., Sankar, A., Fang, Y., Lam, B.Y.H.: Discovering maximal motif cliques in large heterogeneous information networks. In: ICDE, pp. 746–757 (2019)Google Scholar
  94. 94.
    Hu, J., Cheng, R., Huang, Z., Fang, Y., Luo, S.: On embedding uncertain graphs. In: CIKM, pp. 157–166. ACM (2017)Google Scholar
  95. 95.
    Hu, J., Wu, X., Cheng, R., Luo, S., Fang, Y.: Querying minimal Steiner maximum-connected subgraphs in large graphs. In: CIKM, pp. 1241–1250 (2016)Google Scholar
  96. 96.
    Hu, J., Wu, X., Cheng, R., Luo, S., Fang, Y.: On minimal Steiner maximum-connected subgraph queries. In: TKDE, pp. 2455–2469 (2017)Google Scholar
  97. 97.
    Hu, X., Tao, Y., Chung, C.-W.: I/o-efficient algorithms on triangle listing and counting. ACM Trans. Database Syst. (TODS) 39(4), 27 (2014)MathSciNetCrossRefGoogle Scholar
  98. 98.
    Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community in large and dynamic graphs. In: SIGMOD, pp. 1311–1322 (2014)Google Scholar
  99. 99.
    Huang, X., Cheng, H., Yu, J.X.: Attributed community analysis: global and ego-centric views. IEEE Data Eng. Bull. 39(3), 29–40 (2016)Google Scholar
  100. 100.
    Huang, X., Jiang, J., Choi, B., Xu, J., Zhang, Z., Song, Y.: PP-DBLP: modeling and generating attributed public-private networks with DBLP. In: IEEE International Conference on Data Mining Workshops (ICDMW), pp. 986–989 (2018)Google Scholar
  101. 101.
    Huang, X., Lakshmanan, L.V., Yu, J.X., Cheng, H.: Approximate closest community search in networks. PVLDB 9(4), 276–287 (2015)Google Scholar
  102. 102.
    Huang, X., Lakshmanan, L.V.S.: Attribute-driven community search. PVLDB 10(9), 949–960 (2017)Google Scholar
  103. 103.
    Huang, X., Lakshmanan, L.V.S., Xu, J.: Community search over big graphs: models, algorithms, and opportunities. In: ICDE, pp. 1451–1454 (2017)Google Scholar
  104. 104.
    Huang, X., Lu, W., Lakshmanan, L.V.: Truss decomposition of probabilistic graphs: semantics and algorithms. In: SIGMOD, pp. 77–90 (2016)Google Scholar
  105. 105.
    Jayaram, N., Goyal, S., Li, C.: VIIQ: auto-suggestion enabled visual interface for interactive graph query formulation. PVLDB 8(12), 1940–1943 (2015)Google Scholar
  106. 106.
    Jiang, Y., Huang, X., Cheng, H., Yu, J. X.: VizCS: online searching and visualizing communities in dynamic graphs. In: ICDE, pp. 1585–1588 (2018)Google Scholar
  107. 107.
    Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar, H.: Bidirectional expansion for keyword search on graph databases. In: VLDB, pp. 505–516. VLDB Endowment (2005)Google Scholar
  108. 108.
    Kargar, M., An, A.: Keyword search in graphs: finding r-cliques. PVLDB 4(10), 681–692 (2011)Google Scholar
  109. 109.
    Karypis, G., Kumar, V.: Metis-unstructured graph partitioning and sparse matrix ordering system, version 2.0. (1995)Google Scholar
  110. 110.
    Khan, B.S., Niazi, M.A.: Network community detection: a review and visual survey. arXiv:1708.00977 (2017)
  111. 111.
    Khaouid, W., Barsky, M., Srinivasan, V., Thomo, A.: K-core decomposition of large networks on a single PC. PVLDB 9(1), 13–23 (2015)Google Scholar
  112. 112.
    Kim, J., Lee, J.-G.: Community detection in multi-layer graphs: a survey. SIGMOD Rec. 44(3), 37–48 (2015)CrossRefGoogle Scholar
  113. 113.
    Kim, Y., Son, S.-W., Jeong, H.: Finding communities in directed networks. Phys. Rev. E 81(1), 016103 (2010)CrossRefGoogle Scholar
  114. 114.
    Kloumann, I.M., Kleinberg, J.M.: Community membership identification from small seed sets. In: SIGKDD, pp. 1366–1375 (2014)Google Scholar
  115. 115.
    Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta Inf. 15(2), 141–145 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Kuncheva, Z., Montana, G.: Multi-scale community detection in temporal networks using spectral graph wavelets. In: International Workshop on Personal Analytics and Privacy, pp. 139–154 (2017)Google Scholar
  117. 117.
    Lai, L., Qin, L., Lin, X., Chang, L.: Scalable subgraph enumeration in mapreduce. PVLDB 8(10), 974–985 (2015)Google Scholar
  118. 118.
    Lai, L., Qin, L., Lin, X., Zhang, Y., Chang, L., Yang, S.: Scalable distributed subgraph enumeration. PVLDB 10(3), 217–228 (2016)Google Scholar
  119. 119.
    Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80(1), 016118 (2009)CrossRefGoogle Scholar
  120. 120.
    Lee, J., Chung, C.: A query approach for influence maximization on specific users in social networks. TKDE 27(2), 340–353 (2015)MathSciNetGoogle Scholar
  121. 121.
    Leicht, E.A., Newman, M.E.: Community structure in directed networks. Phys. Rev. Lett. 100(11), 118703 (2008)CrossRefGoogle Scholar
  122. 122.
    Leighton, T., Rao, S.: An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In: FOCS, pp. 422–431 (1988)Google Scholar
  123. 123.
    Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of algorithms for network community detection. In: WWW, pp. 631–640 (2010)Google Scholar
  124. 124.
    Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: Ease: an effective 3-in-1 keyword search method for unstructured, semi-structured and structured data. In: SIGMOD, pp. 903–914. ACM (2008)Google Scholar
  125. 125.
    Li, J., Wang, X., Deng, K., Yang, X., Sellis, T., Yu, J.X.: Most influential community search over large social networks. In: ICDE, pp. 871–882 (2017)Google Scholar
  126. 126.
    Li, R.-H., Qin, L., Ye, F., Yu, J. X., Xiao, X., Xiao, N., Zheng, Z.: Skyline community search in multi-valued networks. In: SIGMOD, pp. 457–472 (2018)Google Scholar
  127. 127.
    Li, R.-H., Qin, L., Yu, J.X., Mao, R.: Influential community search in large networks. PVLDB 8(5), 509–520 (2015)Google Scholar
  128. 128.
    Li, R.-H., Qin, L., Yu, J.X., Mao, R.: Finding influential communities in massive networks. VLDB J. 26(6), 751–776 (2017)CrossRefGoogle Scholar
  129. 129.
    Li, R.-H., Su, J., Qin, L., Yu, J. X., Dai, Q.: Persistent community search in temporal networks. In: ICDE, pp. 797–808 (2018)Google Scholar
  130. 130.
    Li, R.-H., Yu, J.X., Mao, R.: Efficient core maintenance in large dynamic graphs. TKDE 26(10), 2453–2465 (2014)Google Scholar
  131. 131.
    Li, X., Cheng, R., Fang, Y., Hu, J., Maniu, S.: Scalable evaluation of k-NN queries on large uncertain graphs. In: EDBT, pp. 181–192 (2018)Google Scholar
  132. 132.
    Li, Y., Sha, C., Huang, X., Zhang, Y.: Community detection in attributed graphs: an embedding approach. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)Google Scholar
  133. 133.
    Li, Z., Fang, Y., Liu, Q., Cheng, J., Cheng, R., Lui, J.: Walking in the cloud: parallel SimRank at scale. PVLDB 9(1), 24–35 (2015)Google Scholar
  134. 134.
    Liu, S., Wang, S., Krishnan, R.: Persistent community detection in dynamic social networks. In: PAKDD, pp. 78–89 (2014)Google Scholar
  135. 135.
    Liu, Y., Niculescu-Mizil, A., Gryc, W.: Topic-link LDA: joint models of topic and author community. In: International Conference on Machine Learning, pp. 665–672 (2009)Google Scholar
  136. 136.
    Luo, F., Wang, J.Z., Promislow, E.: Exploring local community structures in large networks. In: ICWI, pp. 233–239 (2006)Google Scholar
  137. 137.
    Macropol, K., Singh, A.: Scalable discovery of best clusters on large graphs. PVLDB 3(1–2), 693–702 (2010)Google Scholar
  138. 138.
    Malewicz, G., Austern, M. H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD, pp. 135–146. ACM (2010)Google Scholar
  139. 139.
    Malliaros, F.D., Vazirgiannis, M.: Clustering and community detection in directed networks: a survey. Phys. Rep. 533(4), 95–142 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  140. 140.
    Marcel, P., Negre, E.: A survey of query recommendation techniques for data warehouse exploration. In: EDA, pp. 119–134 (2011)Google Scholar
  141. 141.
    Matsuda, H., Ishihara, T., Hashimoto, A.: Classifying molecular sequences using a linkage graph with their pairwise similarities. Theor. Comput. Sci. 210(2), 305–325 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  142. 142.
    Mehler, A., Skiena, S.: Expanding network communities from representative examples. TKDD 3(2), 7 (2009)CrossRefGoogle Scholar
  143. 143.
    Mehlhorn, K.: A faster approximation algorithm for the steiner problem in graphs. Inf. Process. Lett. 27, 125–128 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  144. 144.
    Meng, T., Cai, L., He, T., Chen, L., Deng, Z.: K-hop community search based on local distance dynamics. KSII Trans. Internet Inf. Syst. 12(7) (2018)Google Scholar
  145. 145.
    Montresor, A., De Pellegrini, F., Miorandi, D.: Distributed k-core decomposition. IEEE Trans. Parallel Distrib. Syst. 24(2), 288–300 (2013)CrossRefGoogle Scholar
  146. 146.
    Moradi, F., Olovsson, T., Tsigas, P.: A local seed selection algorithm for overlapping community detection. In: ASONAM, pp. 1–8 (2014)Google Scholar
  147. 147.
    Nallapati, R.M., Ahmed, A., Xing, E.P., Cohen, W.W.: Joint latent topic models for text and citations. In: SIGKDD, pp. 542–550 (2008)Google Scholar
  148. 148.
    Newman, M.E.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)CrossRefGoogle Scholar
  149. 149.
    Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)CrossRefGoogle Scholar
  150. 150.
    Ning, X., Liu, Z., Zhang, S.: Local community extraction in directed networks. Phys. A Stat. Mech. Appl. 452, 258–265 (2016)CrossRefGoogle Scholar
  151. 151.
    Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)CrossRefGoogle Scholar
  152. 152.
    Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detection in social media. DMKD 24(3), 515–554 (2012)Google Scholar
  153. 153.
    Park, H.-M., Myaeng, S.-H., Kang, U.: Pte: enumerating trillion triangles on distributed systems. In: SIGKDD, pp. 1115–1124. ACM (2016)Google Scholar
  154. 154.
    Parthasarathy, S., Ruan, Y., Satuluri, V.: Community discovery in social networks: applications, methods and emerging trends. In: Social Network Data Analytics, pp. 79–113 (2011)Google Scholar
  155. 155.
    Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: SIGKDD, pp. 701–710 (2014)Google Scholar
  156. 156.
    Plantié, M., Crampes, M.: Survey on social community detection. In: Social Media Retrieval, pp. 65–85 (2013)Google Scholar
  157. 157.
    Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: International Symposium on Computer and Information Sciences, pp. 284–293 (2005)Google Scholar
  158. 158.
    Porter, M.A., Onnela, J.-P., Mucha, P.J.: Communities in networks. Not. AMS 56(9), 1082–1097 (2009)MathSciNetzbMATHGoogle Scholar
  159. 159.
    Qi, G.-J., Aggarwal, C.C., Huang, T.S.: Online community detection in social sensing. In: WSDM, pp. 617–626 (2013)Google Scholar
  160. 160.
    Qiao, M., Zhang, H., Cheng, H.: Subgraph matching: on compression and computation. Proc. VLDB Endow. 11(2), 176–188 (2017)CrossRefGoogle Scholar
  161. 161.
    Qin, L., Li, R.-H., Chang, L., Zhang, C.: Locally densest subgraph discovery. In: SIGKDD, pp. 965–974 (2015)Google Scholar
  162. 162.
    Qin, L., Yu, J. X., Chang, L., Tao, Y.: Querying communities in relational databases. In: ICDE (2009)Google Scholar
  163. 163.
    Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM Comput. Surv. 51(2), 35:1–35:37 (2018)CrossRefGoogle Scholar
  164. 164.
    Ruan, Y., Fuhry, D., Parthasarathy, S.: Efficient community detection in large networks using content and links. In: WWW, pp. 1089–1098 (2013)Google Scholar
  165. 165.
    Sachan, M., Contractor, D., Faruquie, T.A., Subramaniam, L.V.: Using content and interactions for discovering communities in social networks. In: WWW, pp. 331–340 (2012)Google Scholar
  166. 166.
    Saito, K., Yamada, T., Kazama, K.: Extracting communities from complex networks by the k-dense method. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 91(11), 3304–3311 (2008)CrossRefGoogle Scholar
  167. 167.
    Sarıyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.-L., Çatalyürek, Ü.V.: Incremental k-core decomposition: algorithms and evaluation. VLDB J. 25(3), 425–447 (2016)CrossRefGoogle Scholar
  168. 168.
    Sariyüce, A.E., Pinar, A.: Fast hierarchy construction for dense subgraphs. PVLDB 10(3), 97–108 (2016)Google Scholar
  169. 169.
    Sariyuce, A.E., Seshadhri, C., Pinar, A., Catalyurek, U.V.: Finding the hierarchy of dense subgraphs using nucleus decompositions. In: WWW, pp. 927–937 (2015)Google Scholar
  170. 170.
    Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)MathSciNetCrossRefGoogle Scholar
  171. 171.
    Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. J. Math. Sociol. 6(1), 139–154 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  172. 172.
    Shakarian, P., Roos, P., Callahan, D., Kirk, C.: Mining for geographically disperse communities in social networks by leveraging distance modularity. In: SIGKDD, pp. 1402–1409 (2013)Google Scholar
  173. 173.
    Shang, J., Wang, C., Wang, C., Guo, G., Qian, J.: An attribute-based community search method with graph refining. J. Supercomput. 1–28 (2017)Google Scholar
  174. 174.
    Shi, C., Li, Y., Zhang, J., Sun, Y., Philip, S.Y.: A survey of heterogeneous information network analysis. IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2017)CrossRefGoogle Scholar
  175. 175.
    Sozio, M., Gionis, A.: The community-search problem and how to plan a successful cocktail party. In: SIGKDD, pp. 939–948 (2010)Google Scholar
  176. 176.
    Subbian, K., Aggarwal, C.C., Srivastava, J., Yu, P.S.: Community detection with prior knowledge. In: SDM, pp. 405–413 (2013)Google Scholar
  177. 177.
    Tamimi, I., El Kamili, M.: Literature survey on dynamic community detection and models of social networks. In: International Conference on Wireless Networks and Mobile Communications, pp. 1–5 (2015)Google Scholar
  178. 178.
    Tang, L., Liu, H.: Scalable learning of collective behavior based on sparse social dimensions. In: CIKM, pp. 1107–1116 (2009)Google Scholar
  179. 179.
    Tong, H., Faloutsos, C., Gallagher, B., Eliassi-Rad, T.: Fast best-effort pattern matching in large attributed graphs. In: KDD, pp. 737–746. ACM (2007)Google Scholar
  180. 180.
    Tsourakakis, C., Bonchi, F., Gionis, A., Gullo, F., Tsiarli, M.: Denser than the densest subgraph: extracting optimal quasi-cliques with quality guarantees. In: SIGKDD, pp. 104–112 (2013)Google Scholar
  181. 181.
    Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM (JACM) 23(1), 31–42 (1976)MathSciNetCrossRefGoogle Scholar
  182. 182.
    Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  183. 183.
    Wang, H., Aggarwal, C.C.: A survey of algorithms for keyword search on graph data. In: Managing and Mining Graph Data, pp. 249–273. Springer (2010)Google Scholar
  184. 184.
    Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–823 (2012)Google Scholar
  185. 185.
    Wang, K., Cao, X., Lin, X., Zhang, W., Qin, L.: Efficient computing of radius-bounded k-cores. In: ICDE, pp. 233–244 (2018)Google Scholar
  186. 186.
    Wang, N., Zhang, J., Tan, K.-L., Tung, A.K.: On triangulation-based dense neighborhood graph discovery. PVLDB 4(2), 58–68 (2010)Google Scholar
  187. 187.
    Wang, Y., Jian, X., Yang, Z., Li, J.: Query optimal k-plex based community in graphs. Data Sci. Eng. 2(4), 257–273 (2017)CrossRefGoogle Scholar
  188. 188.
    Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/o efficient core graph decomposition: application to degeneracy ordering. IEEE Trans. Data Eng. 31(1), 75–90 (2019)CrossRefGoogle Scholar
  189. 189.
    Wu, F.-Y.: The potts model. Rev. Mod. Phys. 54(1), 235 (1982)MathSciNetCrossRefGoogle Scholar
  190. 190.
    Wu, Y., Jin, R., Li, J., Zhang, X.: Robust local community detection: on free rider effect and its elimination. PVLDB 8(7), 798–809 (2015)Google Scholar
  191. 191.
    Wu, Y., Jin, R., Zhu, X., Zhang, X.: Finding dense and connected subgraphs in dual networks. In: ICDE, pp. 915–926 (2015)Google Scholar
  192. 192.
    Xu, Z., Ke, Y., Wang, Y., Cheng, H., Cheng, J.: A model-based approach to attributed graph clustering. In: SIGMOD, pp. 505–516 (2012)Google Scholar
  193. 193.
    Yang, B., Cheung, W., Liu, J.: Community mining from signed social networks. IEEE Trans. Knowl. Data Eng. 19(10), 1333–1348 (2007)CrossRefGoogle Scholar
  194. 194.
    Yang, B., Liu, D., Liu, J.: Discovering communities from social networks: methodologies and applications, pp. 331–346 (2010)Google Scholar
  195. 195.
    Yang, D.-N., Chen, Y.-L., Lee, W.-C., Chen, M.-S.: On social–temporal group query with acquaintance constraint. PVLDB 4(6), 397–408 (2011)Google Scholar
  196. 196.
    Yang, D.-N., Shen, C.-Y., Lee, W.-C., Chen, M.-S.: On socio-spatial group query for location-based social networks. In: SIGKDD, pp. 949–957 (2012)Google Scholar
  197. 197.
    Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2015)CrossRefGoogle Scholar
  198. 198.
    Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node attributes. In: ICDM, pp. 1151–1156 (2013)Google Scholar
  199. 199.
    Yang, J., McAuley, J., Leskovec, J.: Detecting cohesive and 2-mode communities indirected and undirected networks. In: WSDM, pp. 323–332 (2014)Google Scholar
  200. 200.
    Yang, L., Cao, X., He, D., Wang, C., Wang, X., Zhang, W.: Modularity based community detection with deep learning. In: IJCAI, pp. 2252–2258 (2016)Google Scholar
  201. 201.
    Yang, T., Chi, Y., Zhu, S., Gong, Y., Jin, R.: Directed network community detection: a popularity and productivity link model. In: SDM, pp. 742–753 (2010)Google Scholar
  202. 202.
    Yang, T., Jin, R., Chi, Y., Zhu, S.: Combining link and content for community detection: a discriminative approach. In: SIGKDD, pp. 927–936 (2009)Google Scholar
  203. 203.
    Yi, P., Choi, B., Bhowmick, S.S., Xu, J.: AutoG: a visual query autocompletion framework for graph databases. VLDB J. 26(3), 347–372 (2017)CrossRefGoogle Scholar
  204. 204.
    Yu, J.X., Qin, L., Chang, L.: Keyword Search in Databases. Synthesis Lectures on Data Management (2009)Google Scholar
  205. 205.
    Yuan, L., Qin, L., Zhang, W., Chang, L., Yang, J.: Index-based densest clique percolation community search in networks. TKDE 30(5), 922–935 (2018)Google Scholar
  206. 206.
    Yuan, Y., Lian, X., Chen, L., Yu, J.X., Wang, G., Sun, Y.: Keyword search over distributed graphs with compressed signature. TKDE 29(6), 1212–1225 (2017)Google Scholar
  207. 207.
    Yuan, Y., Wang, G., Chen, L., Wang, H.: Efficient subgraph similarity search on large probabilistic graph databases. PVLDB 5(9), 800–811 (2012)Google Scholar
  208. 208.
    Yuan, Y., Wang, G., Chen, L., Wang, H.: Efficient keyword search on uncertain graph data. TKDE 25(12), 2767–2779 (2013)Google Scholar
  209. 209.
    Yuan, Y., Wang, G., Wang, H., Chen, L.: Efficient subgraph search over large uncertain graphs. PVLDB 4(11), 876–886 (2011)Google Scholar
  210. 210.
    Zhang, F., Yuan, L., Zhang, Y., Qin, L., Lin, X., Zhou, A.: Discovering strong communities with user engagement and tie strength. In: DASFAA, pp. 425–441 (2018)Google Scholar
  211. 211.
    Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: When engagement meets similarity: efficient (k, r)-core computation on social networks. PVLDB 10(10), 998–1009 (2017)Google Scholar
  212. 212.
    Zhang, Y., Parthasarathy, S.: Extracting analyzing and visualizing triangle k-core motifs within networks. In: ICDE, pp. 1049–1060 (2012)Google Scholar
  213. 213.
    Zhang, Y., Yu, J. X., Zhang, Y., Qin, L.: A fast order-based approach for core maintenance. In: ICDE, pp. 337–348 (2017)Google Scholar
  214. 214.
    Zhao, F., Tung, A.K.: Large scale cohesive subgraphs discovery for social network visual analysis. PVLDB 6, 85–96 (2012)Google Scholar
  215. 215.
    Zheng, D., Liu, J., Li, R.-H., Aslay, C., Chen, Y.-C., Huang, X.: Querying intimate-core groups in weighted graphs. In: IEEE International Conference on Semantic Computing, pp. 156–163. IEEE (2017)Google Scholar
  216. 216.
    Zheng, Z., Ye, F., Li, R.-H., Ling, G., Jin, T.: Finding weighted k-truss communities in large networks. Inf. Sci. 417(C), 344–360 (2017)CrossRefGoogle Scholar
  217. 217.
    Zhou, D., Councill, I., Zha, H., Giles, C.L.: Discovering temporal communities from social network documents. In: ICDM, pp. 745–750 (2007)Google Scholar
  218. 218.
    Zhou, R., Liu, C., Yu, J. X., Liang, W., Chen, B., Li, J.: Finding maximal k-edge-connected subgraphs from a large graph. In: EDBT, pp. 480–491 (2012)Google Scholar
  219. 219.
    Zhou, R., Liu, C., Yu, J. X., Liang, W., Zhang, Y.: Efficient truss maintenance in evolving networks. arXiv preprint arXiv:1402.2807 (2014)
  220. 220.
    Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities. PVLDB 2(1), 718–729 (2009)Google Scholar
  221. 221.
    Zhu, Q., Hu, H., Xu, C., Xu, J., Lee, W.-C.: Geo-social group queries with minimum acquaintance constraints. VLDB J. 26(5), 709–727 (2017)CrossRefGoogle Scholar
  222. 222.
    Zhu, R., Zou, Z., Li, J.: Diversified coherent core search on multi-layer graphs. In: ICDE, pp. 701–712. IEEE (2018)Google Scholar
  223. 223.
    Zou, L., Chen, L., Özsu, M.T.: Distance-join: pattern match query in a large graph database. PVLDB 2(1), 886–897 (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of New South WalesSydneyAustralia
  2. 2.Zhejiang LabHangzhouChina
  3. 3.Hong Kong Baptist UniversityKowloon TongHong Kong
  4. 4.The University of Technology SydneySydneyAustralia
  5. 5.The University of Hong KongPok Fu LamHong Kong

Personalised recommendations