Advertisement

The VLDB Journal

, Volume 28, Issue 1, pp 73–98 | Cite as

A scalable spatial skyline evaluation system utilizing parallel independent region groups

  • Wenlu Wang
  • Ji Zhang
  • Min-Te Sun
  • Wei-Shinn KuEmail author
Regular Paper
  • 64 Downloads

Abstract

This research presents two parallel solutions to efficiently address spatial skyline queries. First, we propose a novel concept called independent regions for parallelizing the process of spatial skyline evaluation. Spatial skyline candidates in an independent region do not depend on any data point in other independent regions. Then, we propose a GPU-based solution. We use multi-level independent region group-based parallel filter to support efficient multi-threading spatial skyline non-candidate elimination. Beyond that, we propose comparable region to accelerate non-candidate elimination in each independent region. Secondly, we propose a MapReduce-based solution. We generate the convex hull of query points in the first MapReduce phase. In the second phase, we calculate independent regions based on the input data points and the convex hull of the query points. With the independent regions, spatial skylines are evaluated in parallel in the third phase, in which data points are partitioned by their associated independent regions in map functions, and spatial skyline candidates are calculated by reduce functions. The results of the spatial skyline queries are the union of outputs from the reduce functions. Our experimental results show that GPU multi-threading scheme is very efficient on small-scale input datasets. On the contrary, MapReduce scheme performs very well on large-scale input datasets.

Keywords

Spatial skyline query MapReduce Parallel computation GPU 

Notes

Acknowledgements

This research has been funded in part by the National Science Foundation grants IIS-1618669 (III) and ACI-1642133 (CICI).

References

  1. 1.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp. 421–430 (2001)Google Scholar
  2. 2.
    Tan, K-L., Eng, P.-K., Ooi, B.C.: Efficient progressive skyline computation. In: VLDB, pp. 301–310 (2001)Google Scholar
  3. 3.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. In: VLDB, pp. 275–286 (2002)Google Scholar
  4. 4.
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)CrossRefGoogle Scholar
  5. 5.
    Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE, pp. 717–719 (2003)Google Scholar
  6. 6.
    Zhang, S., Mamoulis, N., Cheung, D.W.: Scalable skyline computation using object-based space partitioning. In: SIGMOD Conference, pp. 483–494 (2009)Google Scholar
  7. 7.
    Sarma, A.D., Lall, A., Nanongkai, D., Xu, J.: Randomized multi-pass streaming skyline algorithms. PVLDB 2(1), 85–96 (2009)Google Scholar
  8. 8.
    Huang, Z., Jensen, C.S., Lu, H., Ooi, B.C.: Skyline queries against mobile lightweight devices in MANETs. In: ICDE, p. 66 (2006)Google Scholar
  9. 9.
    Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: VLDB, pp. 751–762 (2006)Google Scholar
  10. 10.
    Son, W., Lee, M.-W., Ahn, H.-K., Hwang, S.-W.: Spatial skyline queries: an efficient geometric algorithm. In: SSTD, pp. 247–264 (2009)Google Scholar
  11. 11.
    Hose, K., Vlachou, A.: A survey of skyline processing in highly distributed environments. VLDB J. 21(3), 359–384 (2012)CrossRefGoogle Scholar
  12. 12.
    Choi, W., Liu, L., Yu, B.: Multi-criteria decision making with skyline computation. In: Information Reuse and Integration (IRI), 2012 IEEE 13th International Conference, pp. 316–323. IEEE (2012)Google Scholar
  13. 13.
    Bøgh, K.S.. Assent, I., Magnani, M.: Efficient GPU-based skyline computation. In: Proceedings of the Ninth International Workshop on Data Management on New Hardware, p. 5. ACM (2013)Google Scholar
  14. 14.
    Lee, J., Hwang, S.-W.: Scalable skyline computation using a balanced pivot selection technique. Inf. Syst. 39, 1–21 (2014)CrossRefGoogle Scholar
  15. 15.
    Mullesgaard, K., Pedersen, J.L., Lu, H., Zhou, Y.: Efficient skyline computation in MapReduce. In: EDBT (2014)Google Scholar
  16. 16.
    Park, Y., Min, J.-K., Shim, K.: Parallel computation of skyline and reverse skyline queries using mapreduce. PVLDB 6(14), 2002–2013 (2013)Google Scholar
  17. 17.
    Zhang, J., Jiang, X., Ku, W.-S., Qin, X.: Efficient parallel skyline evaluation using MapReduce. IEEE Trans. Parallel Distrib. Syst. 27(7), 1996–2009 (2016)CrossRefGoogle Scholar
  18. 18.
    Zhang, C., Li, F., Jestes, J.: Efficient parallel kNN joins for large data in MapReduce. In: EDBT, pp. 38–49 (2012)Google Scholar
  19. 19.
    Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity joins using MapReduce. In: SIGMOD Conference, pp. 495–506 (2010)Google Scholar
  20. 20.
    Okcan, A., Riedewald, M.: Processing theta-joins using MapReduce. In: SIGMOD Conference, pp. 949–960 (2011)Google Scholar
  21. 21.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  22. 22.
    Bøgh, K.S., Chester, S., Assent, I.: Work-efficient parallel skyline computation for the GPU. Proc. VLDB Endow. 8(9), 962–973 (2015)CrossRefGoogle Scholar
  23. 23.
    Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discrete Comput. Geom. 10(1), 377–409 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Eldawy, A., Li, Y., Mokbel, M.F., Janardan, R.: CG\_Hadoop: Computational geometry in MapReduce. In: SIGSPATIAL, pp. 294–303 (2013)Google Scholar
  25. 25.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, New York (2008)CrossRefzbMATHGoogle Scholar
  26. 26.
    Apache, H.: http://hadoop.apache.org. Accessed 26 Apr 2016
  27. 27.
    Chester, S., Šidlauskas, D., Assent, I., Bøgh, K.S: Scalable parallelization of skyline computation for multi-core processors. In: 2015 IEEE 31st International Conference on Data Engineering, pp. 1083–1094. IEEE (2015)Google Scholar
  28. 28.
    Lee, S.-Y., Wu, C.-J.: Characterizing the latency hiding ability of GPUS. In: Performance Analysis of Systems and Software (ISPASS), 2014 IEEE International Symposium, pp. 145–146. IEEE (2014)Google Scholar
  29. 29.
    Balke, W.-T., Güntzer, U., Zheng, J. X.: Efficient distributed skylining for web information systems. In: EDBT, pp. 256–273 (2004)Google Scholar
  30. 30.
    Wu, P., Zhang, C., Feng, Y., Zhao, B.Y., Agrawal, D., El Abbadi, A.: Parallelizing skyline queries for scalable distribution. In: EDBT, pp. 112–130 (2006)Google Scholar
  31. 31.
    Cosgaya-Lozano, A., Rau-Chaplin, A., Zeh, N.: Parallel computation of skyline queries. In: HPCS, p. 12 (2007)Google Scholar
  32. 32.
    Afrati, F.N., Koutris, P., Suciu, D., Ullman, J.D.: Parallel skyline queries. In: ICDT, pp. 274–284 (2012)Google Scholar
  33. 33.
    Rocha-Junior, J.B., Vlachou, A., Doulkeridis, C., Nørvåg, K.: AGiDS: a grid-based strategy for distributed skyline query processing. In: Globe, pp. 12–23 (2009)Google Scholar
  34. 34.
    Vlachou, A., Doulkeridis, C., Kotidis, Y.: Angle-based space partitioning for efficient parallel skyline computation. In: SIGMOD Conference, pp. 227–238 (2008)Google Scholar
  35. 35.
    Köhler, H., Yang, J., Zhou, X.: Efficient parallel skyline processing using hyperplane projections. In: SIGMOD Conference, pp. 85–96 (2011)Google Scholar
  36. 36.
    Han, X., Li, J., Yang, D., Wang, J.: Efficient skyline computation on big data. IEEE Trans. Knowl. Data Eng. 25(11), 2521–2535 (2013)CrossRefGoogle Scholar
  37. 37.
    Zhang, B., Zhou, S., Guan, J.: Adapting skyline computation to the Mapreduce framework: algorithms and experiments. In: DASFAA Workshops, pp. 403–414 (2011)Google Scholar
  38. 38.
    Chen, L., Hwang, K., Wu, J.: Mapreduce skyline query processing with a new angular partitioning approach. In: IPDPS Workshops, pp. 2262–2270 (2012)Google Scholar
  39. 39.
    Yoon, S., Shahabi, C.: Distributed spatial skyline query processing in wireless sensor networks. In: Proceedings of the IPSN, San Francisco, CA, USA, pp. 13–16 (2009)Google Scholar
  40. 40.
    Wang, Y., Song, B., Wang, J., Zhang, L., Wang, L.: Geometry-based distributed spatial skyline queries in wireless sensor networks. Sensors 16(4), 454 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and Software EngineeringAuburn UniversityAuburnUSA
  2. 2.Department of Computer Science and Information EngineeringNational Central UniversityTaoyuan CountyTaiwan, ROC

Personalised recommendations