The VLDB Journal

, Volume 26, Issue 3, pp 347–372 | Cite as

AutoG: a visual query autocompletion framework for graph databases

  • Peipei YiEmail author
  • Byron Choi
  • Sourav S. Bhowmick
  • Jianliang Xu
Regular Paper


Composing queries is evidently a tedious task. This is particularly true of graph queries as they are typically complex and prone to errors, compounded by the fact that graph schemas can be missing or too loose to be helpful for query formulation. Despite the great success of query formulation aids, in particular, automatic query completion, graph query autocompletion has received much less research attention. In this paper, we propose a novel framework for subgraph query autocompletion (called AutoG). Given an initial query q and a user’s preference as input, AutoG returns ranked query suggestions \(Q'\) as output. Users may choose a query from \(Q'\) and iteratively apply AutoG to compose their queries. The novelties of AutoG are as follows: First, we formalize query composition. Second, we propose to increment a query with the logical units called c-prime features that are (i) frequent subgraphs and (ii) constructed from smaller c-prime features in no more than c ways. Third, we propose algorithms to rank candidate suggestions. Fourth, we propose a novel index called feature Dag (FDag) to optimize the ranking. We study the query suggestion quality with simulations and real users and conduct an extensive performance evaluation. The results show that the query suggestions are useful (saved roughly 40% of users’ mouse clicks), and AutoG returns suggestions shortly under a large variety of parameter settings.


Subgraph query Query autocompletion Graphs Database usability 



Peipei Yi and Byron Choi are partially supported by the HK-RGC GRF 12201315 and 12232716. Sourav S Bhowmick is supported by the Singapore MOE AcRF Tier-1 Grant RG24/12 and MOE AcRF Tier-2 Grant 2015-T2-1-040. Jianliang Xu is partially supported by the HK-RGC GRF 12244916 and 12200114.


  1. 1.
    Abiteboul, S., Amsterdamer, Y., Milo, T., Senellart, P.: Auto-completion learning for xml. In: SIGMOD (2012)Google Scholar
  2. 2.
    Bast, H., Weber, I.: Type less, find more: fast autocompletion search with a succinct index. In: SIGIR (2006)Google Scholar
  3. 3.
    Bhowmick, S.S., Choi, B., Zhou, S.: VOGUE: towards a visual interaction-aware graph query processing framework. In: CIDR (2013)Google Scholar
  4. 4.
    Bhowmick, S.S., Chua, H.-E., Thian, B., Choi, B.: ViSual: An hci-inspired simulator for blending visual subgraph query construction and processing. In: ICDE (2015)Google Scholar
  5. 5.
    Bhowmick, S.S., Dyreson, C.E., Choi, B., Ang, M.-H.: Interruption-sensitive empty result feedback: Rethinking the visual query feedback paradigm for semistructured data. In: CIKM (2015)Google Scholar
  6. 6.
    Borodin, A., Lee, H.C., Ye, Y.: Max-sum diversification, monotone submodular functions and dynamic updates. In: PODS (2012)Google Scholar
  7. 7.
    Braga, D., Campi, A., Ceri, S.: XQBE (XQuery By Example), A visual interface to the standard xml query language. In: TODS (2005)Google Scholar
  8. 8.
    Broder, A.Z.: On the resemblance and containment of documents. In: Compression and complexity of sequences (1997)Google Scholar
  9. 9.
    Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recognit. Lett. 19(3), 255–259 (1998)CrossRefzbMATHGoogle Scholar
  10. 10.
    Cheng, J., Ke, Y., Ng, W., Lu, A.: Fg-index: towards verification-free query processing on graph databases. In: SIGMOD (2007)Google Scholar
  11. 11.
    Comai, S., Damiani, E., Fraternali, P.: Computing graphical queries over xml data. In: TOIS (2001)Google Scholar
  12. 12.
    Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching large graphs. In: PAMI (2004)Google Scholar
  13. 13.
    Fan, Z., Peng, Y., Choi, B., Xu, J., Bhowmick, S.S.: Towards efficient authenticated subgraph query service in outsourced graph databases. In: TSC (2014)Google Scholar
  14. 14.
    Feng, J., Li, G.: Efficient fuzzy type-ahead search in xml data. In: TKDE, pp. 882–895 (2012)Google Scholar
  15. 15.
    Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In: WWW (2009)Google Scholar
  16. 16.
    Han, W.-S., Lee, J., Pham, M.-D., Yu, J.X.: iGraph: a framework for comparisons of disk-based graph indexing techniques. In: PVLDB, pp. 449–459 (2010)Google Scholar
  17. 17.
    Herschel, M., Tzitzikas, Y., Candan, K.S., Marian, A.: Exploratory search: New name for an old hat? (2014)
  18. 18.
    Hung, H.H., Bhowmick, S.S., Truong, B.Q., Choi, B., Zhou, S.: QUBLE: blending visual subgraph query formulation with query processing on large networks. In: SIGMOD, pp. 1097–1100 (2013)Google Scholar
  19. 19.
    Jayaram, N., Goyal, S., Li, C.: VIIQ: auto-suggestion enabled visual interface for interactive graph query formulation. In: PVLDB, pp. 1940–1951 (2015)Google Scholar
  20. 20.
    Jayaram, N., Gupta, M., Khan, A., Li, C., Yan, X., Elmasri, R.: GQBE: querying knowledge graphs by example entity tuples. In: ICDE (2014)Google Scholar
  21. 21.
    Jin, C., Bhowmick, S.S., Xiao, X., Cheng, J., Choi, B.: GBLENDER: towards blending visual query formulation and query processing in graph databases. In: SIGMOD (2010)Google Scholar
  22. 22.
    Kriege, N., Mutzel, P., Schäfer, T.: Practical sahn clustering for very large data sets and expensive distance metrics. J. Graph Algorithms Appl. 18, 577–602 (2014)Google Scholar
  23. 23.
    Li, Y., Yu, C., Jagadish, H.V.: Enabling schema-free xquery with meaningful query focus. VLDB J. 17, 355–377 (2008)Google Scholar
  24. 24.
    Lin, C., Lu, J., Ling, T.W., Cautis, B.: LotusX: a position-aware xml graphical search system with auto-completion. In: ICDE (2012)Google Scholar
  25. 25.
    Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25, 42–65 (1982)Google Scholar
  26. 26.
    Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49, 41–46 (2006)Google Scholar
  27. 27.
    McGregor, J.J.: Backtrack search algorithms and the maximal common subgraph problem. Softw. Pract. Exp. 12, 23–34 (1982)Google Scholar
  28. 28.
    Mottin, D., Bonchi, F., Gullo, F.: Graph query reformulation with diversity. In: KDD, pp. 825–834 (2015)Google Scholar
  29. 29.
    Nandi, A., Jagadish, H.V.: Effective phrase prediction. In: VLDB, pp. 219–230 (2007)Google Scholar
  30. 30.
  31. 31.
  32. 32.
    Pandey, S., Punera, K.: Unsupervised extraction of template structure in web search queries. In: WWW, pp. 409–418 (2012)Google Scholar
  33. 33.
    Papakonstantinou, Y., Petropoulos, M., Vassalos, V.: QURSED: querying and reporting semistructured data. In: SIGMOD (2002)Google Scholar
  34. 34.
    Qin, L., Yu, J.X., Chang, L.: Diversifying top-k results. CoRR, arXiv:1208.0076 (2012)
  35. 35.
    Shasha, D., Wang, J.T.-L., Giugno, R.: Algorithmics and applications of tree and graph searching. In: PODS (2002)Google Scholar
  36. 36.
    Venero, M.L.F., Valiente, G.: A graph distance metric combining maximum common subgraph and minimum common supergraph. Pattern Recognit. Lett. 22, 753–758 (2001)CrossRefzbMATHGoogle Scholar
  37. 37.
    Vieira, M.R., Razente, H.L., Barioni, M.C.N., Hadjieleftheriou, M., Srivastava, D., Traina, C., Tsotras, V.J.: On query result diversification. In: ICDE (2011)Google Scholar
  38. 38.
    Wallis, W.D., Shoubridge, P., Kraetzl, M., Ray, D.: Graph distances using graph union. Pattern Recognit. Lett. 22, 701–704 (2001)CrossRefzbMATHGoogle Scholar
  39. 39.
    Xiao, C., Qin, J., Wang, W., Ishikawa, Y., Tsuda, K., Sadakane, K.: Efficient error-tolerant query autocompletion. In: PVLDB (2013)Google Scholar
  40. 40.
    Xie, X., Fan, Z., Choi, B., Yi, P., Bhowmick, S.S., Zhou, S.: PIGEON: Progress indicator for subgraph queries. In: ICDE (2015)Google Scholar
  41. 41.
    Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: ICDM, pp. 721–724, (2002)Google Scholar
  42. 42.
    Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-based approach. In: SIGMOD (2004)Google Scholar
  43. 43.
    Yi, P., Choi, B., Bhowmick, S.S., Xu, J.: AutoG: A visual query autocompletion framework for graph databases. (2016)
  44. 44.
    Yi, P., Choi, B., Bhowmick, S.S., Xu, J.: AutoG: a visual query autocompletion framework for graph databases [demo]. PVLDB 9, 1505–1508 (2016)Google Scholar
  45. 45.
    Yuan, D., Mitra, P.: Lindex: a lattice-based index for graph databases. VLDB J. 22, 229–252 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Hong Kong Baptist UniversityKowloonHong Kong
  2. 2.Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations