The VLDB Journal

, Volume 25, Issue 1, pp 103–123 | Cite as

On k-Path Covers and their applications

Special Issue Paper
  • 554 Downloads

Abstract

For a directed graph G with vertex set V, we call a subset \(C\subseteq V\) a k-(All-)Path Cover if C contains a node from any simple path in G consisting of k nodes. This paper considers the problem of constructing small k-Path Covers in the context of road networks with millions of nodes and edges. In many application scenarios, the set C and its induced overlay graph constitute a very compact synopsis of G, which is the basis for the currently fastest data structure for personalized shortest path queries, visually pleasing overlays of subsampled paths, and efficient reporting, retrieval and aggregation of associated data in spatial network databases. Apart from a theoretic investigation of the problem, we provide efficient algorithms that produce very small k-Path Covers for large real-world road networks (with a posteriori guarantees via instance-based lower bounds). We also apply our algorithms to other (social, collaboration, web, etc.) networks and can improve in several instances upon previous approaches.

Keywords

Path cover Graph compression  VC-dimension Pruning algorithm Personalized route planning Spatial network database 

References

  1. 1.
    Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-dimension and shortest path algorithms. In: International Colloquium on Automata, Languages, and Programming (ICALP), pp. 690–699. Springer, Berlin (2011)Google Scholar
  2. 2.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling algorithm for shortest paths in road networks. In: Symposium on Experimental Algorithms (SEA), pp. 230–241. Springer, Berlin (2011)Google Scholar
  3. 3.
    Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks using transit nodes. Science 316(5824), 566 (2007)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Brešar, B., Kardoš, F., Katrenič, J., Semanišin, G.: Minimum k-path vertex cover. Discrete Appl. Math. 159(12), 1189–1195 (2011)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom. 14(1), 463–479 (1995)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.F.: Customizable route planning. In: Symposium on Experimental Algorithms (SEA), pp. 376–387. Springer, Berlin (2011)Google Scholar
  7. 7.
    Delling, D., Kobitzsch, M., Werneck, R.: Customizing driving directions with GPUs. In: Euro-Par Parallel Processing, vol. 8632, pp. 728–739. Springer, Berlin (2014)Google Scholar
  8. 8.
    Dibbelt, J., Pajor, T., Wagner, D.: User-constrained multi-modal route planning. Networks 6, 10 (2012)Google Scholar
  9. 9.
    Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. arXiv preprint arXiv:1402.0402 (2014)
  10. 10.
    Funke, S., Nusser, A., Storandt, S.: On k-path covers and their applications. PVLDB 7(10), 893–902 (2014). http://www.vldb.org/pvldb/vol7/p893-funke.pdf
  11. 11.
    Funke, S., Storandt, S.: Polynomial-time construction of contraction hierarchies for multi-criteria objectives. In: Sanders, P., Norbert, Z. (eds) Algorithm Engineering and Experiments (ALENEX), pp. 41–54. SIAM (2013)Google Scholar
  12. 12.
    Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)Google Scholar
  13. 13.
    Gutman, R.J.: Reach-based routing: a new approach to shortest path algorithms optimized for road networks. In: Lars, A., Giuseppe, F.I., Robert, S. (eds) Algorithm Engineering and Experiments (ALENEX), pp. 100–111 (2004)Google Scholar
  14. 14.
    Haussler, D., Welzl, E.: Epsilon-nets and simplex range queries. In: Symposium on Computational Geometry (SCG), pp. 61–71. ACM (1986)Google Scholar
  15. 15.
    Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing. STOC ’02, pp. 767–775. ACM, New York, NY (2002)Google Scholar
  16. 16.
    Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2- \(\varepsilon \). J. Comput. Syst. Sci. 74(3), 335–349 (2008)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Ruan, N., Jin, R., Huang, Y.: Distance preserving graph simplification. In: Data Mining (ICDM), 2011 IEEE 11th International Conference on, pp. 1200–1205. IEEE (2011)Google Scholar
  18. 18.
    Tao, Y., Sheng, C., Pei, J.: On k-skip shortest paths. In: ACM SIGMOD International Conference on Management of Data, pp. 421–432. ACM (2011)Google Scholar
  19. 19.
    Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16(2), 264–280 (1971)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Universität Stuttgart, FMIStuttgartGermany
  2. 2.Universität FreiburgFreiburg im BreisgauGermany

Personalised recommendations