The VLDB Journal

, Volume 22, Issue 5, pp 665–687 | Cite as

Large-scale linked data integration using probabilistic reasoning and crowdsourcing

  • Gianluca Demartini
  • Djellel Eddine Difallah
  • Philippe Cudré-Mauroux
Special Issue Paper

Abstract

We tackle the problems of semiautomatically matching linked data sets and of linking large collections of Web pages to linked data. Our system, ZenCrowd, (1) uses a three-stage blocking technique in order to obtain the best possible instance matches while minimizing both computational complexity and latency, and (2) identifies entities from natural language text using state-of-the-art techniques and automatically connects them to the linked open data cloud. First, we use structured inverted indices to quickly find potential candidate results from entities that have been indexed in our system. Our system then analyzes the candidate matches and refines them whenever deemed necessary using computationally more expensive queries on a graph database. Finally, we resort to human computation by dynamically generating crowdsourcing tasks in case the algorithmic components fail to come up with convincing results. We integrate all results from the inverted indices, from the graph database and from the crowd using a probabilistic framework in order to make sensible decisions about candidate matches and to identify unreliable human workers. In the following, we give an overview of the architecture of our system and describe in detail our novel three-stage blocking technique and our probabilistic decision framework. We also report on a series of experimental results on a standard data set, showing that our system can achieve a 95 % average accuracy on instance matching (as compared to the initial 88 % average accuracy of the purely automatic baseline) while drastically limiting the amount of work performed by the crowd. The experimental evaluation of our system on the entity linking task shows an average relative improvement of 14 % over our best automatic approach.

Keywords

Instance matching Entity linking  Data integration Crowdsourcing Probabilistic reasoning 

References

  1. 1.
    Alonso, O., Baeza-Yates, R.A.: Design and implementation of relevance assessments using crowdsourcing. In: ECIR, pp. 153–164 (2011).Google Scholar
  2. 2.
    Bailey, P., de Vries, A.P., Craswell, N., Soboroff, I.: Overview of the TREC 2007 enterprise track. In: TREC (2007)Google Scholar
  3. 3.
    Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the TREC 2010 entity track. In: TREC (2010)Google Scholar
  4. 4.
    Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction from the web. In: IJCAI, pp. 2670–2676 (2007)Google Scholar
  5. 5.
    Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string similarity measures. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’03, pp. 39–48. ACM, New York (2003). doi:10.1145/956750.956759
  6. 6.
    Blanco, R., Halpin, H., Herzig, D., Mika, P., Pound, J., Thompson, H.S., Tran, D.T.: Repeatable and reliable search system evaluation using crowdsourcing. In: SIGIR, pp. 923–932 (2011)Google Scholar
  7. 7.
    Blanco, R., Mika, P., Vigna, S.: Effective and efficient entity search in RDF data. In: International Semantic Web Conference (ISWC), pp. 83–97 (2011)Google Scholar
  8. 8.
    Bouquet, P., Stoermer, H., Niederee, C., Mana, A.: Entity name system: the backbone of an open and scalable web of data. In: Proceedings of the IEEE International Conference on Semantic Computing (ICSC), pp. 554–561 (2008)Google Scholar
  9. 9.
    Bunescu, R., Pasca, M.: Using encyclopedic knowledge for named entity disambiguation. In: Proceedings of EACL, vol. 6 (2006)Google Scholar
  10. 10.
    Bunescu, R.C., Pasca, M.: Using encyclopedic knowledge for named entity disambiguation. In: EACL (2006)Google Scholar
  11. 11.
    Christen, P.: A survey of indexing techniques for scalable record linkage and deduplication. IEEE Trans. Knowl. Data Eng. 24(9), 1537–1555 (2012). doi:10.1109/TKDE.2011.127 CrossRefGoogle Scholar
  12. 12.
    Ciaramita, M., Altun, Y.: Broad-coverage sense disambiguation and information extraction with a supersense sequence tagger. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, EMNLP ’06, pp. 594–602. ACL, Stroudsburg (2006). http://dl.acm.org/citation.cfm?id=1610075.1610158
  13. 13.
    Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data. In: Proceedings of EMNLP-CoNLL, vol. 2007, pp. 708–716 (2007)Google Scholar
  14. 14.
    Cudré-Mauroux, P., Aberer, K., Feher, A.: Probabilistic message passing in peer data management systems. In: International Conference on Data Engineering (ICDE) (2006)Google Scholar
  15. 15.
    Cudré-Mauroux, P., Haghani, P., Jost, M., Aberer, K., De Meer, H.: idMesh: graph-based disambiguation of linked data. In: WWW ’09, pp. 591–600. ACM, New York (2009). doi:10.1145/1526709.1526789
  16. 16.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A framework and graphical development environment for robust NLP tools and applications. In: Proceedings of the 40th Anniversary Meeting of the ACL (2002)Google Scholar
  17. 17.
    Demartini, G., Difallah, D.E., Cudré-Mauroux, P.: Zencrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking. In: Proceedings of the 21st International Conference on World Wide Web, WWW ’12, pp. 469–478. ACM, New York (2012). doi:10.1145/2187836.2187900
  18. 18.
    Demartini, G., Iofciu, T., de Vries, A.P.: Overview of the INEX 2009 entity ranking track. In: INEX, pp. 254–264 (2009)Google Scholar
  19. 19.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39 (1977)Google Scholar
  20. 20.
    Difallah, D.E., Demartini, G., Cudré-Mauroux, P.: Pick-A-Crowd: Tell me what you like, and I’ll tell you what to do. In: WWW’13. ACM, New York (2013)Google Scholar
  21. 21.
    Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex information spaces. In: SIGMOD, pp. 85–96. ACM, New York (2005)Google Scholar
  22. 22.
    Feng, A., Franklin, M.J., Kossmann, D., Kraska, T., Madden, S., Ramesh, S., Wang, A., Xin, R.: CrowdDB: Query Processing with the VLDB Crowd. PVLDB 4(11), 1387–1390 (2011)Google Scholar
  23. 23.
    Finin, T., Murnane, W., Karandikar, A., Keller, N., Martineau, J., Dredze, M.: Annotating named entities in Twitter data with crowdsourcing. In: Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk, CSLDAMT ’10, pp. 80–88 (2010)Google Scholar
  24. 24.
    Getoor, L., Machanavajjhala, A.: Entity resolution: tutorial. In: VLDB (2012)Google Scholar
  25. 25.
    Haas, K., Mika, P., Tarjan, P., Blanco, R.: Enhanced results for web search. In: SIGIR, pp. 725–734 (2011)Google Scholar
  26. 26.
    Han, X., Zhao, J.: Named entity disambiguation by leveraging wikipedia semantic knowledge. In: Proceeding of the 18th ACM Conference on Information and Knowledge Management, CIKM ’09, pp. 215–224. ACM, New York (2009). doi:10.1145/1645953.1645983
  27. 27.
    Jaro, M.: Advances in record-linkage methodology as applied to matching the 1985 census of Tampa. Florida. J. Am. Stat. Assoc. 84(406), 414–420 (1989)CrossRefGoogle Scholar
  28. 28.
    Kazai, G.: In search of quality in crowdsourcing for search engine evaluation. In: ECIR, pp. 165–176 (2011)Google Scholar
  29. 29.
    Kazai, G., Kamps, J., Koolen, M., Milic-Frayling, N.: Crowdsourcing for book search evaluation: impact of hit design on comparative system ranking. In: SIGIR, pp. 205–214 (2011)Google Scholar
  30. 30.
    Klein, D., Manning, C.: Accurate unlexicalized parsing. In: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics, vol. 1, pp. 423–430 (2003)Google Scholar
  31. 31.
    Kohlschütter, C., Fankhauser, P., Nejdl, W.: Boilerplate detection using shallow text features. In: WSDM, pp. 441–450 (2010)Google Scholar
  32. 32.
    Kschischang, F., Frey, B., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inform. Theory 47(2) (2001)Google Scholar
  33. 33.
    Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet Physics Doklady, vol. 10, pp. 707–710 (1966)Google Scholar
  34. 34.
    Lim, E.P., Srivastava, J., Prabhakar, S., Richardson, J.: Entity identification in database integration. Inform. Sci. 89(12), 1–38 (1996). doi:10.1016/0020-0255(95)00185-9 CrossRefGoogle Scholar
  35. 35.
    Liu, X., Lu, M., Ooi, B.C., Shen, Y., Wu, S., Zhang, M.: Cdas: a crowdsourcing data analytics system. Proc. VLDB Endow. 5(10), 1040–1051 (2012). http://dl.acm.org/citation.cfm?id=2336664.2336676
  36. 36.
    Marcus, A., Wu, E., Karger, D.R., Madden, S., Miller, R.C.: Human-powered sorts and joins. PVLDB 5(1), 13–24 (2011)Google Scholar
  37. 37.
    Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems (I-Semantics) (2011)Google Scholar
  38. 38.
    Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic knowledge. In: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, CIKM ’07, pp. 233–242. ACM, New York (2007). doi: 10.1145/1321440.1321475
  39. 39.
    Murphy, K.M., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference: an empirical study. In: Uncertainty in Artificial Intelligence (UAI) (1999)Google Scholar
  40. 40.
    On, B., Koudas, N., Lee, D., Srivastava, D.: Group linkage. In: Proceedings of the 23rd IEEE International Conference on Data Engineering (ICDE), pp. 496–505 (2007)Google Scholar
  41. 41.
    Papadakis, G., Ioannou, E., Niederée, C., Palpanas, T., Nejdl, W.: Beyond 100 million entities: large-scale blocking-based resolution for heterogeneous data. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM ’12, pp. 53–62. ACM, New York (2012). doi:10.1145/2124295.2124305
  42. 42.
    Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In: WWW, pp. 771–780 (2010)Google Scholar
  43. 43.
    Selke, J., Lofi, C., Balke, W.T.: Pushing the boundaries of crowd-enabled databases with query-driven schema expansion. Proc. VLDB Endow. 5(6), 538–549 (2012). http://dl.acm.org/citation.cfm?id=2168651.2168655
  44. 44.
    Shen, W., Wang, J., Luo, P., Wang, M.: Liege: link entities in web lists with knowledge base. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD ’12, pp. 1424–1432. ACM, New York (2012). doi:10.1145/2339530.2339753
  45. 45.
    Tonon, A., Demartini, G., Cudré-Mauroux, P.: Combining inverted indices and structured search for ad-hoc object retrieval. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’12, pp. 125–134. ACM, New York (2012). doi:10.1145/2348283.2348304
  46. 46.
    von Ahn, L., Dabbish, L.: Designing games with a purpose. Commun. ACM 51(8), 58–67 (2008). doi:10.1145/1378704.1378719 Google Scholar
  47. 47.
    von Ahn, L., Liu, R., Blum, M.: Peekaboom: a game for locating objects in images. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’06, pp. 55–64. ACM, New York (2006). doi:10.1145/1124772.1124782
  48. 48.
    Wang, J., Kraska, T., Franklin, M.J., Feng, J.: CrowdER: crowdsourcing entity resolution. PVLDB 5(11), 1483–1494 (2012)Google Scholar
  49. 49.
    Whang, S.E., Menestrina, D., Koutrika, G., Theobald, M., Garcia-Molina, H.: Entity resolution with iterative blocking. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, SIGMOD ’09, pp. 219–232. ACM, New York (2009). doi:10.1145/1559845.1559870
  50. 50.
    Winkler, W.: The state of record linkage and current research problems. US Census Bureau. In: Statistical Research Division (1999)Google Scholar
  51. 51.
    Wylot, M., Pont, J., Wisniewski, M., Cudré-Mauroux, P.: dipLODocus[RDF]—short and long-tail rdf analytics for massive webs of data. In: International Semantic Web Conference (ISWC), pp. 778–793 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gianluca Demartini
    • 1
  • Djellel Eddine Difallah
    • 1
  • Philippe Cudré-Mauroux
    • 1
  1. 1.eXascale InfolabUniversity of FribourgFribourgSwitzerland

Personalised recommendations