The VLDB Journal

, Volume 22, Issue 4, pp 495–517 | Cite as

QoS-aware optimization of sensor network queries

  • Ixent Galpin
  • Alvaro A. A. Fernandes
  • Norman W. Paton
Regular Paper


The resource-constrained nature of mote-level wireless sensor networks (WSNs) poses challenges for the design of a general-purpose sensor network query processors (SNQPs). Existing SNQPs tend to generate query execution plans (QEPs) that are selected on the basis of a fixed, implicit expectation, for example, that energy consumption should be kept as small as possible. However, in WSN applications, the same query may be subject to several, possibly conflicting, quality-of-service (QoS) expectations concomitantly (for example maximizing data acquisition rates subject to keeping energy consumption low). It is also not uncommon for the QoS expectations to change over the lifetime of a deployment (for example from low to high data acquisition rates). This paper describes optimization algorithms that respond to stated QoS expectations (about acquisition rate, delivery time, energy consumption and lifetime) when making routing, placement, and timing decisions for in-WSN query processing. The paper shows experimentally that QoS-awareness offers significant benefits in responding to, and reconciling, diverse QoS expectations, thereby enabling QoS-aware SNQPs to generate efficient QEPs for a broader range WSN applications than has hitherto been possible.


Query optimization Quality-of-service Wireless sensor network 



We thank A. J. Gray and C. Y. A. Brenninkmeijer for their comments and their work on FG-SNEE.

Supplementary material

778_2012_300_MOESM1_ESM.pdf (228 kb)
Supplementary material 1 (PDF 228 KB)


  1. 1.
  2. 2.
    TinyOS website. (2012)
  3. 3.
    Abramson, M.A., Audet, C., Couture, G., Dennis, J.E. Jr., Le Digabel, S., Tribes, C.: The NOMAD project. Software available at
  4. 4.
    Andreou, P., Zeinalipour-Yazti, D., Pamboris, A., Chrysanthis, P.K., Samaras, G.: Optimized query routing trees for wireless sensor networks. Inf. Syst. 36(2), 267–291 (2011)CrossRefGoogle Scholar
  5. 5.
    Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa, I., Srivastava, U., Thomas, D., Varma, R., Widom, J.: STREAM: the stanford stream data manager. IEEE Data Eng. Bull. 26(1), 19–26 (2003)Google Scholar
  6. 6.
    Astrahan, M.M., Blasgen, M.W., Chamberlin, D.D., Gray, J.N., King, W.F., Lindsay, B.G., Lorie, R.A., Mehl, J.W., Price, T.G., Putzolu, G.R., Schkolnick, M., Selinger, P.P., Slutz, D.R., Strong, H.R., Tiberio, P., Traiger, I.L., Wade, B.W., Yost R.A.: System R: a relational data base management system. Computer 12, 42–48. ISSN 0018–9162 (1979)Google Scholar
  7. 7.
    Audet, C., Dennis J.E. Jr.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)Google Scholar
  8. 8.
    Balke, W-T., Güntzer, U.: Multi-objective query processing for database systems. In: VLDB, pp. 936–947 (2004)Google Scholar
  9. 9.
    Boyd, S., Kim, S., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Optim. Eng. 8(1), 67–127 (2007)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Brayner, A., Lopes, A., Meira, D., Vasconcelos, R., Menezes, R.: Toward adaptive query processing in wireless sensor networks. Signal Process.87(12), 2911–2933 (2007)Google Scholar
  11. 11.
    Brenninkmeijer, C.Y.A., Galpin, I., Fernandes, A.A.A., Paton, N.W.: A semantics for a query language over sensors, streams and relations. In: BNCOD, pp. 87–99 (2008)Google Scholar
  12. 12.
    Brenninkmeijer, C.Y.A., Galpin, I., Fernandes, A.A.A., Paton, N.W.: Validated cost models for sensor network queries. In: DMSN (2009)Google Scholar
  13. 13.
    Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker, M., Tatbul, N., Zdonik, S.B.: Monitoring streams—a new class of data management applications. In: VLDB, pp. 215–226 (2002)Google Scholar
  14. 14.
    Dalvi, N.N., Sanghai, S.K., Roy, P., Sudarshan, S.: Pipelining in multi-query optimization. In: PODS (2001)Google Scholar
  15. 15.
    Deligiannakis, A., Kotidis, Y., Stoumpos, V., Delis, A.: Collection trees for event-monitoring queries. Inf. Syst. 36(2), 386–405 (2011)CrossRefGoogle Scholar
  16. 16.
    Galpin, I.: Quality of service aware optimization of sensor network queries. PhD thesis, University of Manchester (2010)Google Scholar
  17. 17.
    Galpin, I., Brenninkmeijer, C.Y.A., Gray, A.J.G., Jabeen, F., Fernandes, A.A.A., Paton, N.W.: SNEE: a query processor for wireless sensor networks. Distrib. Parallel Databases 29(1–2), 31–85 (2011)Google Scholar
  18. 18.
    Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems Implementation. Prentice Hall, Upper Saddle River (2000)Google Scholar
  19. 19.
    Gay, D., Levis, P., von Behren, J.R., Welsh, M., Brewer, E.A., Culler, D. E.: The nesC language: a holistic approach to networked embedded systems. In: PLDI, pp. 1–11 (2003)Google Scholar
  20. 20.
    Gehrke, J., Madden, S.: Query processing in sensor networks. In: IEEE Pervasive Computing, vol. 3. IEEE Computer Society (2004)Google Scholar
  21. 21.
    Graefe, G.: Encapsulation of parallelism in the volcano query processing system. In: SIGMOD Conference, pp. 102–111 (1990)Google Scholar
  22. 22.
    Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.22. (2012)
  23. 23.
    Hart, J.K., Martinez, K.: Environmental sensor networks: a revolution in the earth system science? Earth-Sci. Rev. 78, 177–191 (2006)CrossRefGoogle Scholar
  24. 24.
    Ioannidis, Y.E., Kang, Y.C.: Randomized algorithms for optimizing large join queries. In: SIGMOD Conference, pp. 312–321 (1990)Google Scholar
  25. 25.
    Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley, New York. ISBN 0-470-09510-5 (2005)Google Scholar
  26. 26.
    Klan, D., Karnstedt, M., Hose, K., Ribe-Baumann, L., Sattler, K.: Stream engines meet wireless sensor networks: cost-based planning and processing of complex queries in AnduIN. Distrib. Parallel Databases 29(1–2), 151–183 (2011)CrossRefGoogle Scholar
  27. 27.
    Le Digabel, S.: Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans. Math. Softw. 37(4), 1–15 (2011)CrossRefGoogle Scholar
  28. 28.
    Lédeczi, Á., Nádas, A., Völgyesi, P., Balogh, G., Kusy, B., Sallai, J., Pap, G., Dóra, S., Molnár, K., Maróti, M., Simon, G.: Countersniper system for urban warfare. TOSN 1(2), 153–177 (2005)CrossRefGoogle Scholar
  29. 29.
    Li, W., Batra, V.S., Raman, V., Han, W., Narang, I.: QoS-based data access and placement for federated information systems. In: VLDB, pp. 1358–1362 (2005)Google Scholar
  30. 30.
    Li, W., Gao, D., Bhatti, R., Narang, I., Matsuzawa, H., Numao, M., Ohkawa, M., Fukuda, T.: Deadline and QoS aware data warehouse. In: VLDB, pp. 1418–1421 (2007)Google Scholar
  31. 31.
    Lin, S., Arai, B., Gunopulos, D., Das, G.: Region sampling: continuous adaptive sampling on sensor networks. In: ICDE, pp. 794–803 (2008)Google Scholar
  32. 32.
    Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an acquisitional query processing system for sensor networks. ACM Trans. Database Syst. 30(1), 122–173 (2005)CrossRefGoogle Scholar
  33. 33.
    Marshall, I.W., Price, M.C., Li, H., Boyd, N., Boult, S.: Multi-sensor cross correlation for alarm generation in a deployed sensor network. In: EuroSSC, pp. 286–299 (2007)Google Scholar
  34. 34.
    Martinez, K., Ong, R., Hart, J.: Glacsweb: a sensor network for hostile environments. IEEE SECON (2004)Google Scholar
  35. 35.
    Papadimitriou, C.H., Yannakakis, M.: Multiobjective query optimization. In: PODS (2001)Google Scholar
  36. 36.
    Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Commun. ACM 43(5), 51–58 (2000)CrossRefGoogle Scholar
  37. 37.
    Rappaport, T.S.: Wireless Communications Principles and Practice, 2nd edn. Prentice Hall, Upper Saddle River (2002)Google Scholar
  38. 38.
    Schroeder, B., Harchol-Balter, M., Iyengar, A., Nahum, E.M.: Achieving class-based QoS for transactional workloads. In: ICDE, p. 153 (2006)Google Scholar
  39. 39.
    Sharplesa, J.J., McRaeb, R.H.D., Webera, R.O., Gill, A.M.: A simple index for assessing fire danger rating. Environ. Model. Softw. 24(6), 764–774 (2009)CrossRefGoogle Scholar
  40. 40.
    Swami, A.N.: Optimization of large join queries: combining heuristic and combinatorial techniques. In: SIGMOD Conference, pp. 367–376 (1989)Google Scholar
  41. 41.
    Szewczyk, R., Mainwaring, A.M., Polastre, J., Anderson, J., Culler, D.E.: An analysis of a large scale habitat monitoring application. In: SenSys, pp. 214–226 (2004)Google Scholar
  42. 42.
    Tatbul, N., Çetintemel, U., Zdonik, S.B., Cherniack, M., Stonebraker, M.: Load shedding in a data stream manager. In: VLDB, pp. 309–320 (2003)Google Scholar
  43. 43.
    Tatbul, N., Çetintemel, U., Zdonik S.B.: Staying FIT: efficient load shedding techniques for distributed stream processing. In: VLDB, pp. 159–170 (2007)Google Scholar
  44. 44.
    Thiele, M., Bader, A., Lehner, W.: Multi-objective scheduling for real-time data warehouses. Comput. Sci. Res. Dev. 24, 137–151 (2009)CrossRefGoogle Scholar
  45. 45.
    Titzer, B., Lee, D.K., Palsberg, J.: Avrora: scalable sensor network simulation with precise timing. In: IPSN, pp. 477–482 (2005)Google Scholar
  46. 46.
    Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., Welsh, M.: Fidelity and yield in a volcano monitoring sensor network. In: OSDI, pp. 381–396 (2006)Google Scholar
  47. 47.
    Xing, Y., Hwang, J., Çetintemel, U., Zdonik, S.B.: Providing resiliency to load variations in distributed stream processing. In: VLDB, pp. 775–786 (2006)Google Scholar
  48. 48.
    Zhang, P., Sadler, C.M., Lyon, S.A., Martonosi, M.: Hardware design experiences in ZebraNet. In: SenSys, pp. 227–238 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ixent Galpin
    • 1
  • Alvaro A. A. Fernandes
    • 1
  • Norman W. Paton
    • 1
  1. 1.School of Computer ScienceUniversity of ManchesterManchesterUK

Personalised recommendations