The VLDB Journal

, 20:721 | Cite as

Sequenced spatiotemporal aggregation for coarse query granularities

Special Issue Paper

Abstract

Sequenced spatiotemporal aggregation (SSTA) is an important query for many applications of spatiotemporal databases, such as traffic analysis. Conceptually, an SSTA query returns one aggregate value for each individual spatiotemporal granule. While the data is typically recorded at a fine granularity, at query time a coarser granularity is common. This calls for efficient evaluation strategies that are granularity aware. In this paper, we formally define an SSTA operator that includes a data-to-query granularity conversion. Based on a discrete time model and a discrete 1.5 dimensional space model, we generalize the concept of time constant intervals to constant rectangles, which represent maximal rectangles in the spatiotemporal domain over which an aggregation result is constant. We propose an efficient evaluation algorithm for SSTA queries that takes advantage of a coarse query granularity. The algorithm is based on the plane sweep paradigm, and we propose a granularity aware event point schedule, termed gaEPS, and a granularity aware sweep line status, termed gaSLS. These data structures store space and time points from the input relation in a compressed form using a minimal set of counters. In extensive experiments, we show that for coarse query granularities gaEPS significantly outperforms a basic EPS that is based on an extension of previous work, both in terms of memory usage and runtime.

Keywords

Spatiotemporal aggregation Sequenced aggregation Secondo 

References

  1. 1.
    Bayer, R.: Binary b-trees for virtual memory. In: ACM SIGFIDET, pp. 219–235 (1971)Google Scholar
  2. 2.
    Becker B., Gschwind S., Ohler T., Seeger B., Widmayer P.: An asymptotically optimal multiversion b-tree. VLDB J. 5(4), 264–275 (1996)CrossRefGoogle Scholar
  3. 3.
    Bentley J.L.: Algorithms for Klee’s Rectangle Problems. Computer Science Department, Carnegie-Mellon University, Pittsburgh (1977)Google Scholar
  4. 4.
    Böhlen M.H., Gamper J., Jensen C.S.: Multi-dimensional aggregation for temporal data. In: EDBT, pp. 257–275 (2006)Google Scholar
  5. 5.
    Brinkhoff T.: A framework for generating network-based moving objects. GeoInformatica 6(2), 153–180 (2002)MATHCrossRefGoogle Scholar
  6. 6.
    Cormen T.H., Leiserson C.E., Rivest R.L., Stein C.: Introduction to Algorithms. 2nd edn. The MIT Press, Cambridge (2001)MATHGoogle Scholar
  7. 7.
    Dieker, S., Güting, R.H.: Plug and play with query algebras: SECONDO—a generic DBMS development environment. In: IDEAS, pp. 380–392 (2000)Google Scholar
  8. 8.
    Edelsbrunner H.: Dynamic Rectangle Intersection Searching. Institute for Information Processing Rept. 47, Technical University of Graz, Austria (1980)Google Scholar
  9. 9.
    Geffner, S., Agrawal, D., El Abbadi, A., Smith, T.: Relative prefix sums: an efficient approach for querying dynamic olap data cubes. In: Proceedings of the ICDE-99, pp. 328–335, March (1999)Google Scholar
  10. 10.
    Google. Google’s sparsehash project. http://code.google.com/p/google-sparsehash/. Current as of December 12, (2008)
  11. 11.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD Conference, pp. 47–57 (1984)Google Scholar
  12. 12.
    Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. In: Proceedings of SIGMOD-97, pp. 171–182 (1997)Google Scholar
  13. 13.
    Jensen, C.S., Lee, K.-J., Pakalnis, S., Šaltenis, S.: Advanced tracking of vehicles. In: European Congress and Exhibition on ITS, p. 12 (2005)Google Scholar
  14. 14.
    Kline, N., Snodgrass, R.T.: Computing temporal aggregates. In: ICDE, pp. 222–231 (1995)Google Scholar
  15. 15.
    Lopez I.F.V., Snodgrass R.T., Moon B.: Spatiotemporal aggregate computation: a survey. IEEE Trans. Knowl. Data Eng. 17(2), 271–286 (2005)CrossRefGoogle Scholar
  16. 16.
    McCreight E.M.: Priority search trees. SIAM J. Comput. 14(2), 257–276 (1985)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Moon B., López I.F.V., Immanuel V.: Efficient algorithms for large-scale temporal aggregation. IEEE Trans. Knowl. Data Eng. 15(3), 744–759 (2003)CrossRefGoogle Scholar
  18. 18.
    Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial data warehouses. In: SSTD, pp. 443–459 (2001)Google Scholar
  19. 19.
    Papadias, D., Tao, Y., Kalnis, P., Zhang, J.: Indexing spatio-temporal data warehouses. In: ICDE, pp. 166–175, (2002)Google Scholar
  20. 20.
    Samet H.: Hierarchical representations of collections of small rectangles. ACM Comput. Surv. 20(4), 271–309 (1988)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Sun, J., Papadias, D., Tao, Y., Liu, B.: Querying about the past, the present, and the future in spatio-temporal databases. In: ICDE, pp. 202–213 (2004)Google Scholar
  22. 22.
    Tao, Y., Kollios, G., Considine, J., Li, F., Papadias, D.: Spatio-temporal aggregation using sketches. In: ICDE, pp. 214–226 (2004)Google Scholar
  23. 23.
    Tao, Y., Papadias, D., Zhang, J.: Aggregate processing of planar points. In: EDBT, pp. 682–700 (2002)Google Scholar
  24. 24.
    Yang, J., Widom, J.: Incremental computation and maintenance of temporal aggregates. In: ICDE, pp. 51–60 (2001)Google Scholar
  25. 25.
    Yang J., Widom J.: Incremental computation and maintenance of temporal aggregates. VLDB J. 12, 262–283 (2003)CrossRefGoogle Scholar
  26. 26.
    Zhang, D., Markowetz, A., Tsotras, V.J., Gunopulos, D., Seeger, B.: Efficient computation of temporal aggregates with range predicates. In: PODS, pp. 237–245 (2001)Google Scholar
  27. 27.
    Zhang, D., Markowetz, A., Tsotras, V.J., Gunopulos, D., Seeger, B.: On computing temporal aggregates with range predicates. ACM Trans. Database Syst. 33(2), 12:1–12:39 (2008)Google Scholar
  28. 28.
    Zhang, D., Tsotras, V.J.: Improving min/max aggregation over spatial objects. In: Proceedings of the 9th ACM International Symposium on Advances in Geographic Information Systems, GIS ’01, pp. 88–93 (2001)Google Scholar
  29. 29.
    Zhang, D., Tsotras, V.J., Gunopulos, D.: Efficient aggregation over objects with extent. In: PODS, pp. 121–132 (2002)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.The Free University of Bozen-BolzanoBozen-BolzanoItaly
  2. 2.The University of ZürichZürichSwitzerland

Personalised recommendations