The VLDB Journal

, 20:695 | Cite as

Unveiling the complexity of human mobility by querying and mining massive trajectory data

  • Fosca Giannotti
  • Mirco Nanni
  • Dino Pedreschi
  • Fabio Pinelli
  • Chiara Renso
  • Salvatore Rinzivillo
  • Roberto Trasarti
Special Issue Paper


The technologies of mobile communications pervade our society and wireless networks sense the movement of people, generating large volumes of mobility data, such as mobile phone call records and Global Positioning System (GPS) tracks. In this work, we illustrate the striking analytical power of massive collections of trajectory data in unveiling the complexity of human mobility. We present the results of a large-scale experiment, based on the detailed trajectories of tens of thousands private cars with on-board GPS receivers, tracked during weeks of ordinary mobile activity. We illustrate the knowledge discovery process that, based on these data, addresses some fundamental questions of mobility analysts: what are the frequent patterns of people’s travels? How big attractors and extraordinary events influence mobility? How to predict areas of dense traffic in the near future? How to characterize traffic jams and congestions? We also describe M-Atlas, the querying and mining language and system that makes this analytical process possible, providing the mechanisms to master the complexity of transforming raw GPS tracks into mobility knowledge. M-Atlas is centered onto the concept of a trajectory, and the mobility knowledge discovery process can be specified by M-Atlas queries that realize data transformations, data-driven estimation of the parameters of the mining methods, the quality assessment of the obtained results, the quantitative and visual exploration of the discovered behavioral patterns and models, the composition of mined patterns, models and data with further analyses and mining, and the incremental mining strategies to address scalability.


Spatio-temporal data mining Trajectories Mobility patterns Movement analysis 


  1. 1.
    Abul, O., Bonchi, F., Nanni, M.: \({\mathcal{N}}\) ever \({\mathcal{W}}\) alk \({\mathcal{A}}\) lone: Uncertainty for anonymity in moving objects databases. In: Proceedings of the 24nd IEEE International Conference on Data Engineering (ICDE’08) 2008Google Scholar
  2. 2.
    Abul O., Bonchi F., Nanni M.: Anonymization of moving objects databases by clustering and perturbation. Inf. Syst. 35(8), 884–910 (2010)CrossRefGoogle Scholar
  3. 3.
    Agenzia Milanese Mobilità e Ambiente. Indagine sulla mobilità delle persone dell’area milanese (2006)Google Scholar
  4. 4.
    Andrienko G., Andrienko N., Wrobel S.: Visual analytics tools for analysis of movement data. SIGKDD Explor. Newslett. 9(2), 38–46 (2007)CrossRefGoogle Scholar
  5. 5.
    Andrienko, G., Andrienko, N., Rinzivillo, S., Nanni, M., Pedreschi, D., Giannotti, F.: Interactive visual clustering of large collections of trajectories. In: IEEE Visual Analytics Science and Technology (VAST 2009) 3–10 (2009)Google Scholar
  6. 6.
    Ankerst M., Breunig M.M., Kriegel H.P., Sander J.: Optics: ordering points to identify the clustering structure. SIGMOD 49–60 (1999)Google Scholar
  7. 7.
    Baglioni, M., de Macedo, J., Renso, C., Trasarti, R, Wachowicz, M. Towards semantic intepretation of movement data. In: AGILE Conference (2009)Google Scholar
  8. 8.
    Benkert M., Gudmundsson J., Hübner F., Wolle T.: Reporting flock patterns. Comput. Geom. Theory Appl. 41(3), 111–125 (2008)zbMATHGoogle Scholar
  9. 9.
    Brockmann D., Hufnagel L., Geisel T.: The scaling laws of human travel. Nature 439, 462 (2006)CrossRefGoogle Scholar
  10. 10.
    Chen, Z., Heng Tao, S., Zhou, X., Zheng, Y., Xie, X.: Searching trajectories by locations: an efficiency study. In: Proceedings of the 2010 International Conference on Management of data, SIGMOD ’10, pp. 255–266Google Scholar
  11. 11.
    Cudré-Mauroux, P., Wu, E., Madden, S.T.: An adaptive storage system for very large trajectory data sets. In: International Conference on Data Engineering, pp. 109–120 (2010)Google Scholar
  12. 12.
    De Raedt, L., Jaeger M., Lee, S.D., Mannila, H.: A theory of inductive query answering. In: IEEE International Conference on Data Mining (2002)Google Scholar
  13. 13.
    Ester, M., Kriegel, H-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings on the Knowledge Discovery in Databases Conference, pp. 226–231 (1996)Google Scholar
  14. 14.
    Gaffney, S., Smyth, P.: Trajectory clustering with mixture of regression models. In: Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining, pp. 63–72. ACM (1999)Google Scholar
  15. 15.
  16. 16.
    GeoPKDD website.
  17. 17.
    Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 330–339 (2007)Google Scholar
  18. 18.
    Giannotti, F., Pedreschi, D. (Eds.) Mobility, Data Mining and Privacy—Geographic Knowledge Discovery. Springer, Berlin (2008)Google Scholar
  19. 19.
    Gonzalez M., Hidalgo C.A., Barabási A.-L.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)CrossRefGoogle Scholar
  20. 20.
    Gudmundsson, J., van Kreveld, M.: Computing Longest Duration Flocks in Trajectory Data. In: 14th Annual ACM International Symposium on Advances in Geographic Information Systems, pp. 35–42. New York: ACMGoogle Scholar
  21. 21.
    Güting R.H., Böhlen M.H., Erwig M., Jensen C.S., Lorentzos N.A., Schneider M., Vazirgiannis M.: A foundation for representing and querying moving objects. ACM Trans. Database Syst. 25(1), 1–42 (2000)CrossRefGoogle Scholar
  22. 22.
    Imielinski T., Mannila H.: A database perspective on knowledge discovery. Commun. ACM 39(11), 58–64 (1996)CrossRefGoogle Scholar
  23. 23.
    Johnson, T., Lakshmanan, L.V.S., Ng, R.T.: The 3W model and algebra for unified data mining. In: VLDB ’00: Proceedings of the 26th International Conference on Very Large Data Bases, pp. 21–32. Morgan Kaufmann, San Francisco (2000)Google Scholar
  24. 24.
    Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In Proceedings of 9th International Symposium on Spatial and Temporal Databases (SSTD’05), pp. 364–381. Springer, Berlin (2005)Google Scholar
  25. 25.
    Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group framework. In: SIGMOD Conference, pp. 593–604 (2007)Google Scholar
  26. 26.
    Li, Z., Ji, M., Lee, J.-G., Tang, L.A., Yu, Y., Han, J., Kays, R.: Movemine: mining moving object databases. In: SIGMOD Conference, pp. 1203–1206 (2010)Google Scholar
  27. 27.
    Monreale, A., Pinelli, F., Trasarti, R, Giannotti, F.: Wherenext: a location predictor on trajectory pattern mining. In: 15th ACM SIGKDD Conference on Knoledge Discovery and Data Mining (KDD’09) (2009)Google Scholar
  28. 28.
    Monreale A., Andrienko G., Andrienko N., Giannotti F., Pedreschi D., Rinzivillo S., Wrobel S.: Movement data anonymity through generalization. Trans. Data Privacy 3(2), 91–121 (2010)Google Scholar
  29. 29.
    Nanni M., Pedreschi D.: Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 27(3), 267–289 (2006)CrossRefGoogle Scholar
  30. 30.
    Nanni, M., Trasarti, R., Renso, C., Giannotti, F., Pedreschi, D.: Advanced knowledge discovery on movement data with the GeoPKDD system. In: Proceedings of the 13th International Conference on Extending Database Technology, pp. 693–696 (2010)Google Scholar
  31. 31.
  32. 32.
    Olteanu, A.-M., Trasarti, R., Couronn, T., Giannotti, F., Nanni, M., Smoreda, Z., Ziemlicki, C.: GSM data analysis for tourism application. In: Proceedings of the 7th International Symposium on Spatial Data Quality (ISSDQ) (2011)Google Scholar
  33. 33.
    Ortale, R., Ritacco, E., Pelekis, N., Trasarti, R., Costa, G., Giannotti, F., Manco., Renso, C., Theodoridis, Y.: The DAEDALUS framework: progressive querying and mining of movement data. In: 16th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, ACM-GIS, p. 52 (2008)Google Scholar
  34. 34.
    Pelekis, N., Theodoridis, Y., Vosinakis, S., Panayiotopoulos, T.: Hermes: a framework for location-based data management. In: Proceedings of the International Conference on Extending Database Technology, pp. 1130–1134 (2006)Google Scholar
  35. 35.
    Quannan, L., Zheng, Y., Xing, X., Yukun, C., Wenyu, L., Wei-Ying, M.: Mining user similarity based on location history. In: Proceedings of the 16th ACM SIGSPATIAL International conference on Advances in Geographic Information Systems, GIS ’08, vol. 34, pp. 1–34:10 (2008)Google Scholar
  36. 36.
    Song C., Koren T., Wang P., Barabási A.-L.: Modelling the scaling properties of human mobility. Nat. Phys. 7, 713 (2010)Google Scholar
  37. 37.
    Song C., Qu Z., Blumm N., Barabási A.-L.: Limits of predictability in human mobility. Science 327, 1018–1021 (2010)MathSciNetCrossRefGoogle Scholar
  38. 38.
    The PostGIS spatial database
  39. 39.
    Trasarti, R.: Mastering the Spatio-Temporal Knowledge Discovery Process. PhD in Computer science, University of Pisa (2010)Google Scholar
  40. 40.
    Trasarti R., Giannotti F., Nanni M., Pedreschi D., Renso C.: A query language for mobility data mining. Int. J. Data Warehousing Mining (IJDWM) 7(1), 24–45 (2011)CrossRefGoogle Scholar
  41. 41.
    Trasarti, R., Pinelli, F., Nanni, M., Giannotti, F.: Mining mobility user profiles for car pooling. In: 17th ACM SIGKDD Conference on Knoledge Discovery and Data Mining (KDD’11) (2011)Google Scholar
  42. 42.
    Wachowicz, M., Ong, R., Renso, C., Nanni, M.: Discovering moving flock patterns among pedestrians through spatio-temporal coherence. Int. J. Geograph. Inf. Sci. (in press)Google Scholar
  43. 43.
    Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabási, A.-L.: Human mobility, social ties and link prediction. In: 17th ACM SIGKDD Conference on Knoledge Discovery and Data Mining (KDD’11) (2011)Google Scholar
  44. 44.
    Wang, H., Zaniolo C., Atlas, L.C.: A small but complete sql extension for data mining and data streams. In: Proceedings of International Conference of Very Large Data Base, pp. 1113–1116 (2003)Google Scholar
  45. 45.
    Wang P., Gonzalez M., Hidalgo C.A., Barabási A.-L.: Understanding the spreading patterns of mobile phone viruses. Science 324, 1071–1076 (2009)CrossRefGoogle Scholar
  46. 46.
    Zheng, Y., Zhang, L., Xie, X., M, W.-Y.: Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings of the 18th International Conference on World Wide Web, WWW ’09, pp. 791–800Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Fosca Giannotti
    • 1
    • 3
  • Mirco Nanni
    • 1
  • Dino Pedreschi
    • 2
    • 3
  • Fabio Pinelli
    • 1
  • Chiara Renso
    • 1
  • Salvatore Rinzivillo
    • 1
  • Roberto Trasarti
    • 1
  1. 1.KDD Lab, ISTI-CNRPisaItaly
  2. 2.KDD Lab, University of PisaPisaItaly
  3. 3.CCNR, Northeastern UniversityBostonUSA

Personalised recommendations