Advertisement

The VLDB Journal

, Volume 21, Issue 3, pp 309–332 | Cite as

Parsimonious temporal aggregation

  • Juozas GordevičiusEmail author
  • Johann Gamper
  • Michael Böhlen
Regular Paper

Abstract

Temporal aggregation is an important operation in temporal databases, and different variants thereof have been proposed. In this paper, we introduce a novel temporal aggregation operator, termed parsimonious temporal aggregation (PTA), that overcomes major limitations of existing approaches. PTA takes the result of instant temporal aggregation (ITA) of size n, which might be up to twice as large as the argument relation, and merges similar tuples until a given error (\({\epsilon}\)) or size (c) bound is reached. The new operator is data-adaptive and allows the user to control the trade-off between the result size and the error introduced by merging. For the precise evaluation of PTA queries, we propose two dynamic programming–based algorithms for size- and error-bounded queries, respectively, with a worst-case complexity that is quadratic in n. We present two optimizations that take advantage of temporal gaps and different aggregation groups and achieve a linear runtime in experiments with real-world data. For the quick computation of an approximate PTA answer, we propose an efficient greedy merging strategy with a precision that is upper bounded by O(log n). We present two algorithms that implement this strategy and begin to merge as ITA tuples are produced. They require O(n log (c + β)) time and O(c + β) space, where β is the size of a read-ahead buffer and is typically very small. An empirical evaluation on real-world and synthetic data shows that PTA considerably reduces the size of the aggregation result, yet introducing only small errors. The greedy algorithms are scalable for large data sets and introduce less error than other approximation techniques.

Keywords

Temporal aggregation Data approximation Algorithms Data mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Faloutsos, C., Swami, A.: Efficient search in sequence databases. In: Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms (1993)Google Scholar
  2. 2.
    Berberich, K., Bedathur, S.J., Neumann, T., Weikum, G.: A time machine for text search. In: Proceedings of the 30th Annual International ACM SIGIR Conference On Research and Development in Information Retrieval, pp. 519–526 (2007)Google Scholar
  3. 3.
    Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In: Proceedings Of the 7th International Conference on Database Theory, pp. 217–235 (1999)Google Scholar
  4. 4.
    Böhlen, M.H., Gamper, J., Jensen, C.S.: Multi-dimensional aggregation for temporal data. In: Proceedings of the 10th International Conference On Extending Database Technology, pp. 257–275. Springer, Berlin (2006)Google Scholar
  5. 5.
    Böhlen, M.H., Snodgrass, R.T., Soo, M.D.: Coalescing in temporal databases. In: Proceedings of the 22th International Conference on Very Large Data Bases, pp. 180–191 (1996)Google Scholar
  6. 6.
    Cai, Y., Ng, R.: Indexing spatio-temporal trajectories with Chebyshev polynomials. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 599–610. ACM (2004)Google Scholar
  7. 7.
    Chakrabarti K., Keogh E., Mehrotra S., Pazzani M.: Locally adaptive dimensionality reduction for indexing large time series databases. ACM Trans. Database Syst. 27(2), 188–228 (2002)CrossRefGoogle Scholar
  8. 8.
    Elmeleegy H., Elmagarmid A.K., Cecchet E., Aref W.G., Zwaenepoel W.: Online piece-wise linear approximation of numerical streams with precision guarantees. PVLDB 2(1), 145–156 (2009)Google Scholar
  9. 9.
    Gordevicius, J., Gamper, J., Böhlen, M.H.: A greedy approach towards parsimonious temporal aggregation. In: Proceedings of the 15th International Symposium on Temporal Representation and Reasoning, pp. 88–92 (2008)Google Scholar
  10. 10.
    Gordevicius, J., Gamper, J., Böhlen, M.H.: Parsimonious temporal aggregation. In: Proceedings of the 12th International Conference on Extending Database Technology, pp. 1006-1017 (2009)Google Scholar
  11. 11.
    Jagadish, H.V., Koudas, N., Muthukrishnan, S., Poosala, V., Sevcik, K.C., Suel, T.: Optimal histograms with quality guarantees. In: Proceedings of the 24th International Conference on Very Large Data Bases, pp. 275–286 (1998)Google Scholar
  12. 12.
    Keogh E., Kasetty S.: On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Min. Knowl. Discov. 7(4), 349–371 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Keogh, E., Xi, X., Wei, L., Ratanamahatana, C.: The UCR time series classification/clustering repository. http://www.cs.ucr.edu/~eamonn/time_series_data/. Accessed on April 15, (2009)
  14. 14.
    Keogh, E.J., Pazzani, M.J.: A simple dimensionality reduction technique for fast similarity search in large time series databases. In: Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 122–133. Springer, Berlin (2000)Google Scholar
  15. 15.
    Kline, N., Snodgrass, R.T.: Computing temporal aggregates. In: Proceedings of the 11th International Conference on Data Engineering, pp. 222–231 (1995)Google Scholar
  16. 16.
    Li, C.S., Yu, P., Castelli, V.: Hierarchyscan: a hierarchical similarity search algorithm for databases of long sequences. In: Proceedings of the 12th International Conference on Data Engineering, pp. 546–553 (1996)Google Scholar
  17. 17.
    Lin J., Keogh E., Wei L., Lonardi S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Discov. 15(2), 107–144 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Moon B., Vega Lopez I.F., Immanuel V.: Efficient algorithms for large-scale temporal aggregation. IEEE Trans. Knowl. Data Eng. 15(3), 744–759 (2003)CrossRefGoogle Scholar
  19. 19.
    Navathe S.B., Ahmed R.: A temporal relational model and a query language. Inf. Sci. 49(1–3), 147–175 (1989)zbMATHCrossRefGoogle Scholar
  20. 20.
    Palpanas T., Vlachos M., Keogh E., Gunopulos D.: Streaming time series summarization using user-defined amnesic functions. IEEE Trans. Knowl. Data Eng. 20(7), 992–1006 (2008)CrossRefGoogle Scholar
  21. 21.
    Palpanas, T., Vlachos, M., Keogh, E., Gunopulos, D., Truppel, W.: Online amnesic approximation of streaming time series. In: Proceedings of the 20th International Conference on Data Engineering, pp. 339–349 (2004)Google Scholar
  22. 22.
    Shieh, J., Keogh, E.: iSAX: indexing and mining terabyte sized time series. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631 (2008)Google Scholar
  23. 23.
    Snodgrass R.T., Gomez S., McKenzie L.E.: Aggregates in the temporal query language TQuel. IEEE Trans. Knowl. Data Eng. 5(5), 826–842 (1993)CrossRefGoogle Scholar
  24. 24.
    Stollnitz E., DeRose A., Salesin D.: Wavelets for computer graphics: a primer, part 1. IEEE Comput. Graph. Appl. 15(3), 76–84 (1995)CrossRefGoogle Scholar
  25. 25.
    Tao, Y., Papadias, D., Faloutsos, C.: Approximate temporal aggregation. In: Proceedings of the 20th International Conference on Data Engineering, pp. 190–201 (2004)Google Scholar
  26. 26.
    Tuma, P.: Implementing historical aggregates in TempIS. Ph.D. thesis, Wayne State University, Detroit, Michigan (1992)Google Scholar
  27. 27.
    Vega Lopez I.F., Snodgrass R.T., Moon B.: Spatiotemporal aggregate computation: A survey. IEEE Trans. Knowl. Data Eng. 17(2), 271–286 (2005)CrossRefGoogle Scholar
  28. 28.
    Wang, F.: Employee temporal data set. http://timecenter.cs.aau.dk/. Accessed on April 15, 2009
  29. 29.
    Wettschereck D., Aha D.W., Mohri T.: A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 11(1–5), 273–314 (1997)CrossRefGoogle Scholar
  30. 30.
    Yang J., Widom J.: Incremental computation and maintenance of temporal aggregates. VLDB J. 12(3), 262–283 (2003)CrossRefGoogle Scholar
  31. 31.
    Yi, B.K., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. In: Proceedings of the 26th International Conference on Very Large Data Bases, pp. 385–394. Morgan Kaufmann, Amsterdam (2000)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Juozas Gordevičius
    • 1
    Email author
  • Johann Gamper
    • 2
  • Michael Böhlen
    • 3
  1. 1.Institute of Mathematics and InformaticsVilnius UniversityVilniusLithuania
  2. 2.Free University of Bozen-BolzanoBolzanoItaly
  3. 3.Department of InformaticsUniversity of ZurichZurichSwitzerland

Personalised recommendations