The VLDB Journal

, Volume 20, Issue 5, pp 671–694 | Cite as

Efficient real-time trajectory tracking

Special Issue Paper

Abstract

Moving objects databases (MOD) manage trajectory information of vehicles, animals, and other mobile objects. A crucial problem is how to efficiently track an object’s trajectory in real-time, in particular if the trajectory data is sensed at the mobile object and thus has to be communicated over a wireless network. We propose a family of tracking protocols that allow trading the communication cost and the amount of trajectory data stored at a MOD off against the spatial accuracy. With each of these protocols, the MOD manages a simplified trajectory that does not deviate by more than a certain accuracy bound from the actual movement. Moreover, the different protocols enable several trade-offs between computational costs, communication cost, and the reduction in the trajectory data: Connection-Preserving Dead Reckoning minimizes the communication cost using dead reckoning, a technique originally designed for tracking an object’s current position. Generic Remote Trajectory Simplification (GRTS) further separates between tracking of the current position and simplification of the past trajectory and can be realized with different line simplification algorithms. For both protocols, we discuss how to bound the space consumption and computing time at the moving object and thereby present an effective compression technique to optimize the reduction performance of real-time line simplification in general. Our evaluations with hundreds of real GPS traces show that a realization of GRTS with a simple simplification heuristic reaches 85–90% of the best possible reduction rate, given by retrospective offline simplification. A realization with the optimal line simplification algorithm by Imai and Iri even reaches more than 97% of the best possible reduction rate.

Keywords

Moving objects database MOD Trajectory tracking Dead reckoning Line simplification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abam, M.A., de Berg, M., Hachenberger, P., Zarei, A.: Streaming algorithms for line simplification. In: Proceedings of the 23rd Symposium on Computational Geometry (SCG), pp. 175–183. Gyeongju, South Korea (2007)Google Scholar
  2. 2.
    Agarwal P.K., Har-Peled S., Mustafa N.H., Wang Y.: Near-linear time approximation algorithms for curve simplification. Algorithmica 42(3–4), 203–219 (2005)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Agarwal P.K., Varadarajan K.R.: Efficient algorithms for approximating polygonal chains. Discret. Comput. Geom. 23(2), 273–291 (2000)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cao H., Wolfson O., Trajcevski G.: Spatio-temporal data reduction with deterministic error bounds. VLDB J. 15(3), 211–228 (2006)CrossRefGoogle Scholar
  5. 5.
    Chan, W.S., Chin, F.: Approximation of polygonal curves with minimum number of line segments. In: Proceedings of the 3rd International Symposium on Algorithms and Computation (ISAAC), pp. 378–387. Nagoya, Japan (1992)Google Scholar
  6. 6.
    Douglas D.H., Peucker T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can. Cartog. 10(2), 112–122 (1973)Google Scholar
  7. 7.
    Gudmundsson, J., Katajainen, J., Merrick, D., Ong, C., Wolle, T.: Compressing spatio-temporal trajectories. In: Proceedings of the 18th International Symposium on Algorithms and Computation (ISAAC), pp. 763–775. Sendai, Japan (2007)Google Scholar
  8. 8.
    Güting R.H., Schneider M.: Moving Objects Databases. Morgan Kaufmann, San Francisco, CA (2005)Google Scholar
  9. 9.
    Hershberger, J., Snoeyink, J.: An O(n log n) implementation of the Douglas–Peucker algorithm for line simplification. In: Proceedings of the 10th Symposium on Computational Geometry, pp. 383–384. Stony Brook, NY (1994)Google Scholar
  10. 10.
    Hönle, N., Großmann, M., Nicklas, D., Mitschang, B.: Preprocessing position data of mobile objects. In: Proceedings of the 9th International Conference on Mobile Data Management (MDM), pp. 41–48. Beijing, China (2008)Google Scholar
  11. 11.
    Imai, H., Iri, M.: Computational Morphology, chapter Polygonal Approximations of a Curve—Formulations and Algorithms, pp. 71–86. North-Holland Publishing Company, Netherlands (1988)Google Scholar
  12. 12.
    Lange, R., Dürr, F., Rothermel, K.: Online trajectory data reduction using connection-preserving dead reckoning. In: Proceedings of the 5th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous). Dublin, Ireland. http://www.mobiquitous.org (2008a)
  13. 13.
    Lange, R., Dürr, F., Rothermel, K.: Scalable processing of trajectory-based queries in space-partitioned moving objects databases. In: Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS), pp. 270–279. Irvine, CA (2008b)Google Scholar
  14. 14.
    Lange, R., Dürr, F., Rothermel, K.: Efficient tracking of moving objects using generic remote trajectory simplification (Demo Paper). In: Proceedings of the 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). Mannheim, Germany (2010)Google Scholar
  15. 15.
    Lange, R., Farrell, T., Dürr, F., Rothermel, K.: Remote real-time trajectory simplification. In: Proceedings of the 7th IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 184–193. Galveston, TX (2009)Google Scholar
  16. 16.
    Lema J.A.C., Forlizzi L., Güting R.H., Nardelli E., Schneider M.: Algorithms for moving objects databases. Comput. J. 46(6), 680–712 (2003)MATHCrossRefGoogle Scholar
  17. 17.
    Leonhardi A., Rothermel K.: A comparison of protocols for updating location information. Clust. Comput. J. Netw. Softw. Tools Appl. 4(4), 355–367 (2001)Google Scholar
  18. 18.
    Meratnia, N., de By, R.A.: Spatiotemporal compression techniques for moving point objects. In: Proceedings of the 9th International Conference on Extending Database Technology (EDBT), pp. 765–782. Heraklion, Crete (2004)Google Scholar
  19. 19.
    Misra, P., Enge, P.: Global Positioning System: Signals, Measurements and Performance. Ganga-Jumuna Press, Lincoln, MA (2001)Google Scholar
  20. 20.
    Mokbel M.F., Ghanem T.M., Aref W.G.: Spatio-temporal access methods. IEEE Data Eng. Bull. 26(2), 40–49 (2003)Google Scholar
  21. 21.
  22. 22.
    Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving-object representations. In: Proceedings of the 6th International Symposium on Advances in Spatial Databases (SSD), pp. 111–131. Hong Kong, China (1999)Google Scholar
  23. 23.
    Potamias, M., Patroumpas, K., Sellis, T.: Amnesic online synopses for moving objects. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management (CIKM), pp. 784–785. Arlington, VA (2006a)Google Scholar
  24. 24.
    Potamias, M., Patroumpas, K., Sellis, T.: Sampling trajectory streams with spatiotemporal criteria. In: Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM), pp. 275–284. Vienna, Austria (2006b)Google Scholar
  25. 25.
    Rankin, J.: GPS and differential GPS: an error model for sensor simulation. In: Position Location and Navigation Symposium, pp. 260–266 (1994)Google Scholar
  26. 26.
    Tiešyt e, D., Jensen, C.S.: Recovery of vehicle trajectories from tracking data for analysis purposes. In: Proceedings of the 6th European Congress and Exhibition on Intelligent Transport Systems and Services. Aalborg, Denmark (2007)Google Scholar
  27. 27.
    Trajcevski, G., Cao, H., Scheuermann, P., Wolfson, O., Vaccaro, D.: Online data reduction and the quality of history in moving objects databases. In: Proceedings of the 5th ACM International Workshop on Data Engineering for Wireless and Mobile Access (MobiDE), Chicago, IL (2006)Google Scholar
  28. 28.
    US Dept. of Defense. Global Positioning System Standard Positioning Service Performance Standard (2001)Google Scholar
  29. 29.
    Varadarajan, K.R.: Approximating monotone polygonal curves using the uniform metric. In: Proceedings of the 12th Symposium on Computational Geometry, pp. 311–318. Philadelphia, PA (1996)Google Scholar
  30. 30.
    Čivilis A., Jensen C.S., Pakalnis S.: Techniques for efficient road-network-based tracking of moving objects. IEEE Trans. Knowl. Data Eng. (TKDE) 17(5), 698–712 (2005)CrossRefGoogle Scholar
  31. 31.
    Wolfson O., Sistla A.P., Chamberlain S., Yesha Y.: Updating and querying databases that track mobile units. Distrib. Parallel Databases 7(3), 257–287 (1999)CrossRefGoogle Scholar
  32. 32.
    Zogg, J.-M.: Essentials of Satellite Navigation (Compendium). http://www.u-blox.com/ (2009)

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Parallel and Distributed Systems (IPVS)Universität StuttgartStuttgartGermany

Personalised recommendations