The VLDB Journal

, Volume 19, Issue 6, pp 849–875 | Cite as

The social bookmark and publication management system bibsonomy

A platform for evaluating and demonstrating Web 2.0 research
  • Dominik Benz
  • Andreas Hotho
  • Robert Jäschke
  • Beate Krause
  • Folke Mitzlaff
  • Christoph Schmitz
  • Gerd Stumme
Special Issue Paper

Abstract

Social resource sharing systems are central elements of the Web 2.0 and use the same kind of lightweight knowledge representation, called folksonomy. Their large user communities and ever-growing networks of user-generated content have made them an attractive object of investigation for researchers from different disciplines like Social Network Analysis, Data Mining, Information Retrieval or Knowledge Discovery. In this paper, we summarize and extend our work on different aspects of this branch of Web 2.0 research, demonstrated and evaluated within our own social bookmark and publication sharing system BibSonomy, which is currently among the three most popular systems of its kind. We structure this presentation along the different interaction phases of a user with our system, coupling the relevant research questions of each phase with the corresponding implementation issues. This approach reveals in a systematic fashion important aspects and results of the broad bandwidth of folksonomy research like capturing of emergent semantics, spam detection, ranking algorithms, analogies to search engine log data, personalized tag recommendations and information extraction techniques. We conclude that when integrating a real-life application like BibSonomy into research, certain constraints have to be considered; but in general, the tight interplay between our scientific work and the running system has made BibSonomy a valuable platform for demonstrating and evaluating Web 2.0 research.

Keywords

BibSonomy Collaborative tagging Web 2.0 Folksonomy Data mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batagelj, V., Zaversnik, M.: Generalized cores. CoRR cs.DS/0202039. http://arxiv.org/abs/cs/0202039 (2002)
  2. 2.
    Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: WWW ’07: Proceedings of the 16th international conference on World Wide Web, pp. 131–140. ACM, New York, NY, USA (2007)Google Scholar
  3. 3.
    Bogers, T.: Recommender systems for social bookmarking. PhD thesis, Tilburg University, Tilburg, The Netherlands. http://ilk.uvt.nl/~toine/phd-thesis/ (2009)
  4. 4.
    Bork, M.: Webservice API für Bibsonomy. Project report. http://www.kde.cs.uni-kassel.de/lehre/arbeiten/documents/bork2006webservice.pdf (2006)
  5. 5.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp 43–52. (1998)Google Scholar
  6. 6.
    Brin S., Page L.: The anatomy of a large-scale hypertextual web search engine. Comput. Networks ISDN Syst 30(1–7), 107–117 (1998)CrossRefGoogle Scholar
  7. 7.
    Budanitsky A., Hirst G.: Evaluating wordnet-based measures of lexical semantic relatedness. Comput. Linguist 32(1), 13–47 (2006)CrossRefGoogle Scholar
  8. 8.
    Cattuto, C., Loreto, V., Pietronero, L.: Collaborative tagging and semiotic dynamics. CoRR abs/cs/0605015. http://arxiv.org/abs/cs/0605015 (2006)
  9. 9.
    Cattuto C., Schmitz C., Baldassarri A., Servedio V.D.P., Loreto V., Hotho A., Grahl M., Stumme G.: Network properties of folksonomies. AI Commun 20(4), 245–262 (2007)MathSciNetGoogle Scholar
  10. 10.
    Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic grounding of tag relatedness in social bookmarking systems. The Semantic Web—ISWC, pp. 615–631. (2008)Google Scholar
  11. 11.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm (2001)
  12. 12.
    Dubinko, M., Kumar, R., Magnani, J., Novak, J., Raghavan, P., Tomkins, A.: Visualizing tags over time. In: Proceedings of the 15th International WWW Conference (2006)Google Scholar
  13. 13.
    Fielding, R.T.: Architectural styles and the design of network-based software architectures. PhD thesis, University of California, Irvine (2000)Google Scholar
  14. 14.
    Golder, S., Huberman, B.A.: The structure of collaborative tagging systems. CoRR abs/cs/0508082. http://arxiv.org/abs/cs.DL/0508082 (2005)
  15. 15.
    Halpin, H., Robu, V., Shepard, H.: The dynamics and semantics of collaborative tagging. In: Möller, K., de Waard, A., Cayzer, S., Koivunen, M.R., Sintek, M., Handschuh, S. (eds.), Proceedings of the 1st Semantic Authoring and Annotation Workshop (SAAW’06), CEUR-WS.org, vol 209. (2006)Google Scholar
  16. 16.
    Hammond, T., Hannay, T., Lund, B., Scott, J.: Social Bookmarking Tools (I): A General Review. D-Lib Magazine 11(4): (2005)Google Scholar
  17. 17.
    Haveliwala, T.H.: Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. Technical Report 2003-29, Stanford InfoLab. http://ilpubs.stanford.edu:8090/750/, extended version of the WWW2002 paper on Topic-Sensitive PageRank. (2003)
  18. 18.
    Herlocker J.L., Konstan J.A., Terveen L.G., Riedl J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst 22(1), 5–53 (2004)CrossRefGoogle Scholar
  19. 19.
    Heymann P., Koutrika G., Garcia-Molina H.: Fighting spam on social web sites: A survey of approaches and future challenges. IEEE Int. Comput. 11(6), 36–45 (2007)CrossRefGoogle Scholar
  20. 20.
    Heymann, P., Koutrika, G., Garcia-Molina, H.: Can social bookmarking improve web search? In: WSDM ’08: Proceedings of the International Conference on Web Search and Web Data Mining, pp. 195–206. ACM, New York, NY, USA (2008)Google Scholar
  21. 21.
    Hotho A., Jäschke R., Schmitz C., Stumme G.: BibSonomy: a social bookmark and publication sharing system. In: Moor, A., Polovina, S., Delugach, H. (eds) Proc. of the Conceptual Structures Tool Interoperability Workshop., pp. 87–102. Aalborg University Press, Aalborg (2006a)Google Scholar
  22. 22.
    Hotho A., Jäschke R., Schmitz C., Stumme G.: Emergent semantics in BibSonomy. In: Hochberger, C., Liskowsky, R. (eds) Informatik 2006—Informatik für Menschen, Gesellschaft für Informatik vol 94., Lecture Notes in Informatics, Bonn (2006b)Google Scholar
  23. 23.
    Hotho A., Jäschke R., Schmitz C., Stumme G.: Information retrieval in folksonomies: search and ranking. In: Sure, Y., Domingue, J. (eds) The Semantic Web: Research and Applications, Lecture Notes in Computer Science vol 4011., pp. 411–426. Springer, Berlin (2006c)Google Scholar
  24. 24.
    Hotho A., Jäschke R., Schmitz C., Stumme G.: Trend detection in folksonomies. In: Avrithis Y.S., Kompatsiaris Y., Staab S., O’Connor N.E. (eds) Proc. First International Conference on Semantics And Digital Media Technology SAMT Lecture Notes in Computer Science, vol 4306, pp. 56–70. Springer, Berlin (2006d)Google Scholar
  25. 25.
    Hotho A., Jäschke R., Benz D., Grahl M., Krause B., Schmitz C., Stumme G.: Social bookmarking am beispiel bibSonomy. In: Blumauer, A., Pellegrini, T. (eds) Social Semantic Web, X media press chap 18, pp. 363–391. Springer, Berlin (2009). doi:10.1007/978-3-540-72216-8 CrossRefGoogle Scholar
  26. 26.
    Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Proceedings of the International Conference on Research in Computational Linguistics (ROCLING). Taiwan (1997)Google Scholar
  27. 27.
    Jäschke R., Grahl M., Hotho A., Krause B., Schmitz C., Stumme G.: Organizing publications and bookmarks in BibSonomy. In: Alani, H., Noy, N., Stumme, G., Mika, P., Sure, Y., Vrandecic, D. (eds) Workshop on Social and Collaborative Construction of Structured Knowledge (CKC 2007) at WWW 2007., Banff, Canada (2007)Google Scholar
  28. 28.
    Jäschke R., Marinho L.B., Hotho A., Schmidt-Thieme L., Stumme G.: Tag recommendations in folksonomies. In: Kok, J.N., Koronacki, J., Mántaras, R.L., Matwin, S., Mladenic, D., Skowron, A. (eds) Knowledge Discovery in Databases: PKDD 2007, Lecture Notes in Computer Science, vol 4702., pp. 506–514. Springer, Berlin (2007)CrossRefGoogle Scholar
  29. 29.
    Jäschke R., Marinho L., Hotho A., Schmidt-Thieme L., Stumme G.: Tag recommendations in social bookmarking systems. AI Commun 21(4), 231–247 (2008)MATHGoogle Scholar
  30. 30.
    Jäschke, R., Eisterlehner, F., Hotho, A., Stumme, G.: Testing and evaluating tag recommenders in a live system. In: RecSys ’09: Proceedings of the 2009 ACM Conference, on Recommender Systems. ACM, New York, NY, USA, (to appear) (2009)Google Scholar
  31. 31.
    Kleinberg J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Krause, B., Jäschke, R., Hotho, A., Stumme, G.: Logsonomy—social information retrieval with logdata. In: HT ’08: Proc. of the 19th ACM Conference on Hypertext and Hypermedia, pp. 157–166. ACM, New York, NY, USA (2008)Google Scholar
  33. 33.
    Krause, B., Schmitz, C., Hotho, A., Stumme, G.: The anti-social tagger—detecting spam in social bookmarking systems. In: AIRWeb ’08: Proceedings of the 4th International Workshop on Adversarial Information Retrieval on the Web, pp. 61–68. ACM, New York, NY, USA (2008)Google Scholar
  34. 34.
    Lehmann F., Wille R.: A triadic approach to formal concept analysis. In: Ellis, G., Levinson, R., Rich, W., Sowa, J.F. (eds) Conceptual Structures: Applications, Implementation and Theory, Lecture Notes in Artificial Intelligence, vol 954., pp. 32–43. Springer, Berlin (1995)Google Scholar
  35. 35.
    Lund, B., Hammond, T., Flack, M., Hannay, T.: Social Bookmarking Tools (II): A Case Study—Connotea. D-Lib Magazine 11(4): (2005)Google Scholar
  36. 36.
    Marinho, L.B., Schmidt-Thieme, L.: Collaborative tag recommendations. In: Proceedings of 31st Annual Conference of the Gesellschaft für Klassifikation (GfKl). Springer, Freiburg (2007)Google Scholar
  37. 37.
    Mathes, A.: Folksonomies—Cooperative Classification and Communication Through Shared Metadata. http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html (2004)
  38. 38.
    McCallum A.K. MALLET: A Machine Learning for Language Toolkit. http://mallet.cs.umass.edu/ (2002)
  39. 39.
    Mika, P.: Ontologies are us: a unified model of social networks and semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A.(eds.) Proceedings of the 4th International Semantic Web Conference, Lecture Notes in Computer Science, vol 3729, pp. 522–536. Springer, Berlin (2005)Google Scholar
  40. 40.
    Peng, F., McCallum, A.: Accurate information extraction from research papers using conditional random fields. In: HLT-NAACL, pp. 329–336. (2004)Google Scholar
  41. 41.
    Quintarelli, E.: Folksonomies: power to the people. http://www-dimat.unipv.it/biblio/isko/doc/folksonomies.htm (2005)
  42. 42.
    Reenskaug, T.: Models-views-controllers. Tech. rep., Xerox PARC (1979)Google Scholar
  43. 43.
    Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P., Riedl, J.: GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of ACM 1994 Conference on Computer Supported Cooperative Work, pp. 175–186. ACM, Chapel Hill North Carolina (1994)Google Scholar
  44. 44.
    Salton G.: Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley Longman Publishing Co Inc., Boston (1989)Google Scholar
  45. 45.
    Sarwar, B.M., Karypis, G., Konstan, J.A., Reidl, J.: Item-based collaborative filtering recommendation algorithms. In: World Wide Web, pp. 285–295. (2001)Google Scholar
  46. 46.
    Schachter, J. now serving: 1,000,000. Blog post. http://blog.delicious.com/blog/2006/09/million.html (2006)
  47. 47.
    Schmitz C., Hotho A., Jäschke R., Stumme G.: Mining association rules in folksonomies. In: Batagelj, V., Bock, H.H., Ferligoj, A., Žiberna, A. (eds) Data Science and Classification: Proceedings of the 10th IFCS Conference, Studies in Classification, Data Analysis, and Knowledge Organization, pp. 261–270. Springer, Berlin (2006)Google Scholar
  48. 48.
    Steels L.: Collaborative tagging as distributed cognition. Pragmat. Cogn. 14(2), 287–292 (2006)CrossRefGoogle Scholar
  49. 49.
    Stumme, G.: A finite state model for on-line analytical processing in triadic contexts. In: Ganter, B., Godin, R. (eds.) Proceedings of the 3rd International Conference on Formal Concept Analysis, Lecture Notes in Computer Science, vol 3403, pp. 315–328. Springer, Berlin, Heidelberg (2005)Google Scholar
  50. 50.
    Vander Wal, T. Folksonomy. Blog post. http://vanderwal.net/folksonomy.html (2007)
  51. 51.
    Wille R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht–Boston (1982)Google Scholar
  52. 52.
    Witten I.H., Frank E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (1999)Google Scholar
  53. 53.
    Xi, W., Zhang, B., Lu, Y., Chen, Z., Yan, S., Zeng, H., Ma, W., Fox, E.: Link fusion: A unified link analysis framework for multi-type interrelated data objects. In: Proceedings 13th International World Wide Web Conference, New York (2004)Google Scholar
  54. 54.
    Yahia S.A., Benedikt M., Lakshmanan L.V.S., Stoyanovich J.: Efficient network aware search in collaborative tagging sites. Proceedings of the VLDB Endowment 1(1), 710–721 (2008). doi:10.1145/1453856.1453934 Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Dominik Benz
    • 1
  • Andreas Hotho
    • 2
  • Robert Jäschke
    • 1
    • 3
  • Beate Krause
    • 1
    • 2
  • Folke Mitzlaff
    • 1
  • Christoph Schmitz
    • 1
    • 3
  • Gerd Stumme
    • 1
    • 3
  1. 1.Knowledge & Data Engineering Group, Research Center for Information Systems DesignUniversity of KasselKasselGermany
  2. 2.Data Mining and Information Retrieval GroupUniversity of WürzburgWürzburgGermany
  3. 3.L3S Research CenterHannoverGermany

Personalised recommendations