Advertisement

The VLDB Journal

, Volume 17, Issue 4, pp 923–945 | Cite as

Tree-based partition querying: a methodology for computing medoids in large spatial datasets

  • Kyriakos Mouratidis
  • Dimitris PapadiasEmail author
  • Spiros Papadimitriou
Regular Paper

Abstract

Besides traditional domains (e.g., resource allocation, data mining applications), algorithms for medoid computation and related problems will play an important role in numerous emerging fields, such as location based services and sensor networks. Since the k-medoid problem is NP-hard, all existing work deals with approximate solutions on relatively small datasets. This paper aims at efficient methods for very large spatial databases, motivated by: (1) the high and ever increasing availability of spatial data, and (2) the need for novel query types and improved services. The proposed solutions exploit the intrinsic grouping properties of a data partition index in order to read only a small part of the dataset. Compared to previous approaches, we achieve results of comparable or better quality at a small fraction of the CPU and I/O costs (seconds as opposed to hours, and tens of node accesses instead of thousands). In addition, we study medoid-aggregate queries, where k is not known in advance, but we are asked to compute a medoid set that leads to an average distance close to a user-specified value. Similarly, medoid-optimization queries aim at minimizing both the number of medoids k and the average distance. We also consider the max version for the aforementioned problems, where the goal is to minimize the maximum (instead of the average) distance between any object and its closest medoid. Finally, we investigate bichromatic and weighted medoid versions for all query types, as well as, maximum capacity and dynamic medoids.

Keywords

Spatial databases Query processing Medoid queries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J.: OPTICS: ordering points to identify the clustering structure. In: SIGMOD (1999)Google Scholar
  2. 2.
    Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-squares partitioning. In: Proceedings of ACM Symposium on Computational Geometry (1992)Google Scholar
  3. 3.
    Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Euclidean k-medians and related problems. In: STOC (1998)Google Scholar
  4. 4.
    Berchtold, S., Keim, D., Kriegel, H.: The X-tree: an index structure for high-dimensional data. In: VLDB (1996)Google Scholar
  5. 5.
    Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust access method for points and rectangles. In: SIGMOD (1990)Google Scholar
  6. 6.
    Ester, M., Kriegel, H.P., Xu, X.: A database interface for clustering in large spatial databases. In: KDD (1995)Google Scholar
  7. 7.
    Ester, M., Kriegel, H.P., Xu, X.: Knowledge discovery in large spatial databases: focusing techniques for efficient class identification. In: SSD (1995)Google Scholar
  8. 8.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD (1996)Google Scholar
  9. 9.
    Fayyad U., Piatetsky-Shapiro G., Smyth P. and Uthurusamy R. (1996). Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, Cambridge Google Scholar
  10. 10.
    Gonzalez T. (1985). Clustering to minimize the maximum intercluster distance. Theor. Compu. Sci. 38: 293–306 zbMATHCrossRefGoogle Scholar
  11. 11.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979)Google Scholar
  12. 12.
    Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large databases. In: SIGMOD (1998)Google Scholar
  13. 13.
    Hartigan J.A. (1975). Clustering Algorithms. Wiley, New York zbMATHGoogle Scholar
  14. 14.
    Hamerly, G., Elkan, C.: Learning the k in k-means. In: NIPS (2003)Google Scholar
  15. 15.
    Hjaltason, G., Samet, H.: Distance browsing in spatial databases. In: ACM TODS 24(2), 265–318 (1999)Google Scholar
  16. 16.
    Hastie T., Tibshirani R. and Friedman J. (2001). The Elements of Statistical Learning. Springer, Heidelberg zbMATHGoogle Scholar
  17. 17.
    Kamel, I., Faloutsos, C.: On Packing R-trees. In: CIKM (1993)Google Scholar
  18. 18.
    Kaufman L. and Rousseeuw P. (1990). Finding Groups in Data. Wiley–Interscience, New York Google Scholar
  19. 19.
    Lo, M.L., Ravishankar, C.V.: Generating Seeded Trees from Data Sets. In: SSD (1995)Google Scholar
  20. 20.
    Lo, M.L., Ravishankar, C.V.: The design and implementation of seeded trees: an efficient method for spatial joins. In: TKDE 10(1), 136–151 (1998)Google Scholar
  21. 21.
    Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual partitioning: an efficient method for continuous nearest neighbor monitoring. In: SIGMOD (2005)Google Scholar
  22. 22.
    Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the clustering properties of the Hilbert space-filling curve. In: TKDE 13(1), 124–141 (2001)Google Scholar
  23. 23.
    Mamoulis, N., Papadias, D.: Slot index spatial join. In: TKDE 15(1), 211–231 (2003)Google Scholar
  24. 24.
    Mokbel, M., Xiong, X., Aref, W.: SINA: Scalable incremental processing of continuous queries in spatio-temporal In: SIGMOD (2004)Google Scholar
  25. 25.
    Ng, R., Han, J.: Efficient and effective clustering methods for spatial data mining. In: VLDB (1994)Google Scholar
  26. 26.
    Pelleg, D., Moore, A.W.: Accelerating exact k-means algorithms with geometric reasoning. In: KDD (1999)Google Scholar
  27. 27.
    Pelleg, D., Moore, A.W.: X-means: Extending k-means with efficient estimation of the number of clusters. In: ICML (2000)Google Scholar
  28. 28.
    Roussopoulos, N., Kelly, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD (1995)Google Scholar
  29. 29.
    Tao Y. and Papadias D. (2004). Range aggregate processing in spatial databases. TKDE 16(12): 1555–1570 Google Scholar
  30. 30.
    Theodoridis Y., Stefanakis E. and Sellis T. (2000). Efficient cost models for spatial queries using R-trees. TKDE 12(1): 19–32 Google Scholar
  31. 31.
    Welzl E. (1991). Smallest enclosing disks (Balls and Ellipsoids). New Results New Trends Compu. Sci. 555: 359–370 CrossRefMathSciNetGoogle Scholar
  32. 32.
    Xing G., Wang X., Zhang Y., Lu C., Pless R. and Gill C. (2005). Integrated coverage and connectivity configuration for energy conservation in sensor networks. ACM TOSN 1(1): 36–72 CrossRefGoogle Scholar
  33. 33.
    Yu, X., Pu, K., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects. In: ICDE (2005)Google Scholar
  34. 34.
    Zhang, D., Du, Y., Xia, T., Tao, Y.: Progressive computation of the min-dist optimal-location query. In: VLDB (2006)Google Scholar
  35. 35.
    Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: SIGMOD (1996)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Kyriakos Mouratidis
    • 1
  • Dimitris Papadias
    • 2
    Email author
  • Spiros Papadimitriou
    • 3
  1. 1.Singapore Management UniversitySingaporeSingapore
  2. 2.Hong Kong University of Science and TechnologyKowloonHong Kong
  3. 3.IBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations