Advertisement

The VLDB Journal

, Volume 16, Issue 3, pp 343–369 | Cite as

Optimization and evaluation of shortest path queries

  • Edward P. F. Chan
  • Heechul Lim
Regular Paper

Abstract

We investigate the problem of how to evaluate efficiently a collection of shortest path queries on massive graphs that are too big to fit in the main memory. To evaluate a shortest path query efficiently, we introduce two pruning algorithms. These algorithms differ on the extent of materialization of shortest path cost and on how the search space is pruned. By grouping shortest path queries properly, batch processing improves the performance of shortest path query evaluation. Extensive study is also done on fragment sizes, cache sizes and query types that we show that affect the performance of a disk-based shortest path algorithm. The performance and scalability of proposed techniques are evaluated with large road systems in the Eastern United States. To demonstrate that the proposed disk-based algorithms are viable, we show that their search times are significant better than that of main-memory Dijkstra's algorithm.

Keywords

Shortest path queries Route queries Query evaluation and optimization Graph pruning Disk-based algorithms Graph algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Jagadish, H.V.: Algorithms for searching massive graphs. IEEE Trans. on Knowl. Data Eng. 6(2), 225–238 (1994)CrossRefGoogle Scholar
  2. 2.
    Bancilhon, F., Ramakrishnan, R.: An Amateur's introduction to recursive query processing strategies. In: Proceedings of Sigmod, pp.16–52 (1996)Google Scholar
  3. 3.
    Chan, E.P.F., Zhang, N.: Finding shortest paths in large network systems. In: Proceedings of the 9th ACM International Workshop on Advances in Geographic Information Systems. (ACM-GIS 2001). pp.160–166 Atlanta, Georgia (2001)Google Scholar
  4. 4.
    Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest path algorithms: theory and experimental evaluation. Mathematical Programming. 73, 129–174 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. MIT Press (1990)Google Scholar
  6. 6.
    Goldman, R., Shivakumar, N., Venkatasubramanian, S., Garcia-Molina H.: Proximity search in databases. In: Proceedings of the 24th VLDB Conference, pp.26–37 New York (1998)Google Scholar
  7. 7.
    Hutchinson, D., Maheshwari, A., Zeh, Z.: An external-memory data structure for shortest path queries. In: Proceedings of the 5th Annual Combinatorics and Computing Conference (COCOON 99), Tokyo, July 26–28, 1999, Lecture Notes in Computer Science, vol. 1627, pp.51–60, Springer Verlag (1999)Google Scholar
  8. 8.
    Ioannidis, Y., Ramakrishnan, R.: Efficient Transitive Closure Algorithms, In: Proceedings of 14th VLDB Conference, pp.382–394 (1988)Google Scholar
  9. 9.
    Jagadish, H.V.: A compression technique to materialize transitive closure. ACM Trans. Database Sys. 14(4), 558–598 (1990)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jing, N., Huang, Y.W., Rundensteiner, E.A.: Hierarchical encoded path views for path query processing: An optimal model and its performance evaluation. IEEE Trans. Knowl. Data Eng. 10(3), 1–23 (1998)CrossRefGoogle Scholar
  11. 11.
    Jung, S., Pramanik, S.: An efficient path computation model for hierarchicallly structured topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029–1046 (2002)CrossRefGoogle Scholar
  12. 12.
    Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36, 177–189 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Merrett, T.H., Kambayashi, Y., Yasuura, H.: Scheduling of Page-Fetches in Join Operation. In: Proceedings of the Seventh International Conference on VLDB. pp. 488–497 Cannes, France (1981)Google Scholar
  14. 14.
    Shekhar, S., Fetterer, A., Goyal, B.: Materialization Trade-Offs in Hierarchical Shortest Path Algorithms. In: Proceedings of the 5th International Symposium on Large Spatial Databases, Lecture Nodes in Computer Science 1262, Springer Verlag pp.94–111 (1997)Google Scholar
  15. 15.
    Tiger/Line Files, US Department of Commerce Economics and Statistics Administration, Bureau of Census (1998)Google Scholar
  16. 16.
    Valduriez, P., Boral, H.: Evaluation of recursive queries using join indices. In: Proceedings of 12th International Conference on VLDB. pp.403–411, Kyoto, Japan (1986)Google Scholar
  17. 17.
    Vazirgiannis, M., Wolfson, O.: A Spatialtemporal Model and Language for Moving Objects on Road Networks. In: Proceedings of the 7th International Symposium on Spatial and Temporal Databases (STTD 2001), pp.20–35. L.A., CA, (2001)Google Scholar
  18. 18.
    Zeh, N.: An external-memory data structure for shortest path queries. Diplomarbeit, Friedrich-Schiller-Universitit Jena (1998)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations