Advertisement

The VLDB Journal

, Volume 16, Issue 2, pp 179–200 | Cite as

SQL extension for spatio-temporal data

  • Jose R. Rios Viqueira
  • Nikos A. LorentzosEmail author
Article

Abstract

An SQL extension is formalized for the management of spatio-temporal data, i.e. of spatial data that evolves with respect to time. The extension is dedicated to applications such as topography, cartography, and cadastral systems, hence it considers discrete changes both in space and in time. It is based on the rigid formalization of data types and of SQL constructs. Data types are defined in terms of time and spatial quanta. The SQL constructs are defined in terms of a kernel of few relational algebra operations, composed of the well-known operations of the 1NF model and of two more, Unfold and Fold. In conjunction with previous work, it enables the uniform management of 1NF structures that may contain not only spatio-temporal but also either purely temporal or purely spatial or conventional data. The syntax and semantics of the extension is fully consistent with the {SQL:2003} standard.

Keywords

Spatial databases Data modelling Spatio-temporal databases SQL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. Ariav, G.: A temporally oriented data model. ACM Trans. Database Syst. 11(4), 499–527 (1986)CrossRefGoogle Scholar
  2. 2.
    2. Clifford, J., Croker, A.: The historical relational data model (HRDM) revisited. In: Tansel, A., Clifford, J., Gadia, S., Segev, A., Snodgrass, R. (eds.) Temporal Databases: Theory, Design, and Implementation, pp. 6–27. Benjamin/Cummings, Redwood City, CA (1993)Google Scholar
  3. 3.
    3. Clifford, J., Tansel, A.U.: On an algebra for historical relational databases: Two views. In: Proceedings of the ACM SIGMOD International Conference on Management of Data. Austin, TX. ACM SIGMOD Rec. 14(4), 247–265 (1985)CrossRefGoogle Scholar
  4. 4.
    4. Navathe, S.B., Ahmed, R.: Temporal extensions to the relational model and SQL. In: Tansel, A.U., Clifford, J., Gadia, S., Segev, A., Snodgrass, R. (eds.) Temporal Databases: Theory, Design, and Implementation, pp. 6–27. Benjamin/Cummings, Redwood City, CA (1993)Google Scholar
  5. 5.
    5. Tansel, A.U.: Adding time dimension to relational model and extending relational algebra. Inf. Syst. 11(4), 343–355(1990)CrossRefGoogle Scholar
  6. 6.
    6. Chan, E.P.F., Zhu, R.: QL/G—A query language for geometric data bases. In: Proceedings of the 1st International Conference on GIS, Urban Regional and Environmental Planning, pp. 271–286. Samos, Greece (1996)Google Scholar
  7. 7.
    7. Egenhofer, M.J.: Spatial SQL: A query and presentation language. IEEE Trans. Knowledge Data Eng. 6(1), 86–95 (1994)CrossRefGoogle Scholar
  8. 8.
    8. Güting, R.H., Schneider, M.: Realm-based spatial data types: The rose algebra. VLDB J. 4, 100–143 (1995)Google Scholar
  9. 9.
    9. Güting, R.H.: Geo-relational algebra: A model and query language for geometric database systems. In: Proceedings of the International Conference on Extending Database Technology (EDBT′88), pp. 506–527. Venice, Italy (1988)Google Scholar
  10. 10.
    10. Gargano, M., Nardelli, E., Talamo, M.: Abstract data types for the logical modeling of complex data. Inf. Syst. 16(6), 565–583 (1991)CrossRefGoogle Scholar
  11. 11.
    11. Grumbach, S., Rigaux, P., Segoufin, L.: The dedale system for complex spatial queries. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 213–224. Seattle, WA (1998)Google Scholar
  12. 12.
    12. Hadzilacos, T., Tryfona, N.: Logical data modeling for geographical applications. Int. J. Geogr. Inf. Sci. 10(2), 179–203(1996)CrossRefGoogle Scholar
  13. 13.
    13. Kuper, G.M., Ramaswamy, S., Shim, K., Su, J.: A constraint-based spatial extension to SQL. In: Proceedings of the 6th International Symposium on Advances in Geographic Information Systems (GIS′98), pp. 112–117. Washington, DC (1998)Google Scholar
  14. 14.
    14. Larue, T., Pastre, D., Viémont, Y.: Strong integration of spatial domains and operators in a relational database system. In: Proceedings of the 3rd International Symposium on Large Spatial Databases (SSD′93), pp. 53–72. Singapore (1993)Google Scholar
  15. 15.
    15. Lorentzos, N.A., Tryfona, N., Viqueira, J.R.R.: Relational algebra for spatial data management. In: Proceedings of the International Workshop on Integrated Spatial Databases, Digital Images, and GIS, pp. 192–208. Portland ME, (1999)Google Scholar
  16. 16.
    16. Park, K., Lee, J., Lee, K., Ahn, K., Lee, J., Kim, J.: The development of geus: A spatial DBMS tightly integrated with an object-relational database engine. In: Proceedings of the Annual Conference Urban and Regional Information Systems Association (URISA′98), pp. 256–267. Charlotte, NC (1998)Google Scholar
  17. 17.
    17. Roussopoulos, N., Faloutsos, C., Sellis, T.K.: An efficient pictorial database system for PSQL. IEEE Trans. Softw. Eng. 14(5), 639–650 (1988)CrossRefGoogle Scholar
  18. 18.
    18. Scholl, M., Voisard, A.: Object-oriented database systems for geographic applications: An experiment with o2. In: Bancilhon, F., Delobel, C., Kanellakis, P.C. (eds.) Building an Object-Oriented Database System, The Story of O2, pp. 585–618. Morgan Kaufmann, San Fransisco (1992)Google Scholar
  19. 19.
    19. Scholl, M., Voisard, A.: Thematic map modeling. In: Proceedings of the 1st International Symposium on Large Spatial Databases (SSD′89), pp. 167–190. Santa Barbara, CA (1989)Google Scholar
  20. 20.
    20. Svensson, P., Huang, Z.: Geo-sal—a query language for spatial data analysis. In: Proceedings of the 2nd International Symposium on Large Spatial Databases (SSD′91), pp. 119–140. Zürich, Switzerland (1991)Google Scholar
  21. 21.
    21. Tomlin, C.D.: Geographic Information Systems and Cartographic Modeling. Prentice-Hall, Englewood Cliffs, NJ (1990)Google Scholar
  22. 22.
    22. van Roessel, J.W.: An integrated point-attribute model for four types of areal GIS features. In: Proceedings of the 6th International Symposium on Spatial Data Handling (SDH′94), vol. 1, pp. 127–144. Edinburg, Scotland, UK (1994)Google Scholar
  23. 23.
    23. Vijlbrief, T., van Oosterom, P.: The geo++ system: An extensible GIS. In: Proceedings of the 5th International Symposium on Spatial Data Handling (SDH′92), pp. 40–50. Charleston, SC (1992)Google Scholar
  24. 24.
    24. Davis, J.R.: IBM's DB2 spatial extender: Managing geo-spatial information within the DBMS. Technical Report, IBM Corporation (1998)Google Scholar
  25. 25.
    25. Bentley Systems, Inc.: MicroStation GeoGraphics User's Guide Version 7.2 (2001). Found at http://docs.bentley.com
  26. 26.
    26. Environmental Systems Research Institute, Inc.: ArcInfo 8: A New GIS for the New Millennium (2000). Found at http://www.esri.com
  27. 27.
    27. Intergraph Corporation: Working with Geomedia Proffesional (2002)Google Scholar
  28. 28.
    28. International Business Machines Corporation (IBM): IBM DB2 Spatial Extender User's Guide and Reference, Version 7 (2001)Google Scholar
  29. 29.
    29. International Business Machines Corporation (IBM): IBM Informix Spatial DataBlade Module User's Guide, Version 8.11 (2001)Google Scholar
  30. 30.
    30. Oracle Corporation: Oracle Spatial: Users Guide and Reference. Release 8.1.7 (2000)Google Scholar
  31. 31.
    31. Postgis: Geographic objects for postgresql. Retrieved April from http://www.postgis.org/ (2005)
  32. 32.
    32. International Organization for Standardization (ISO): Information technology—Database Languages—SQL Multimedia and Application Packages—Part 3: Spatial. ISO/IEC 13249-2:2000/Cor 1:2003 ISO/IEC 13249-3 (2003)Google Scholar
  33. 33.
    33. Open GeoSpatial Consortium (OGC): Simple Features Specification for SQL 1.1 (SFS). OGC Project Document 99-049 (1999)Google Scholar
  34. 34.
    34. Böhlen, M.H., Jensen, C.S., Skjellaug, B.: Spatio-temporal database support for legacy applications. In: Proceedings of the 1998 ACM Symposium on Applied Computing (SAC′98), pp. 226–234. Atlanta, GA (1998)Google Scholar
  35. 35.
    35. Chen, C.X., Zaniolo, C.: SQLST: A spatio-temporal data model and query language. In: Proceedings of the 19th International Conference on Conceptual Modeling (ER-2000), pp. 96–111. Salt Lake City, Utah, UT (2000)Google Scholar
  36. 36.
    36. Cheng, T.S., Gadia, S.K.: A pattern matching language for spatio-temporal databases. In: Proceedings of the 3th International Conference on Information and Knowledge Management (CIKM′94), pp. 288–295. Gaithersburg, MD (1994)Google Scholar
  37. 37.
    37. d'Onofrio, A., Pourabbas, E.: Formalization of temporal thematic map contents. In: Proceedings of the 9th ACM International Symposium on Advances in Geographic Information Systems (GIS 2001), pp. 15–20. Atlanta, GA (2001)Google Scholar
  38. 38.
    38. Erwig, M., Güting, R.H., Schneider, M., Vazirgiannis, M.: Spatio-temporal data types: An approach to modeling and querying moving objects in databases. GeoInformatica 3(3), 269–296(1999)CrossRefGoogle Scholar
  39. 39.
    39. Erwig, M., Schneider, M.: The honeycomb model of spatio-temporal partitions. In: Proceedings of the International Workshop on Spatio-Temporal Database Management (STDBM′99), pp. 39–59. Edinburgh, Scotland, UK (1999)Google Scholar
  40. 40.
    40. Forlizzi, L., Güting, R.R., Nardelli, E., Schneider, M.: A data model and data structures for moving objects databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, Dallas, TX. ACM SIGMOD Rec. 29(2), 319–330 (2000)CrossRefGoogle Scholar
  41. 41.
    41. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM Trans. Database Syst. 25(1), 1–42 (2000)CrossRefGoogle Scholar
  42. 42.
    42. Griffiths, T., Fernandes, A.A.A., Paton, N.W., Mason, K.T., Huang, B., Worboys, M.F.: Tripod: A comprehensive model for spatial and aspatial historical objects. In: Proceedings of the 20th International Conference on Conceptual Modeling (ER 2001), pp. 84–102. Yokohama, Japan (2001)Google Scholar
  43. 43.
    43. Grumbach, S., Rigaux, P., Segoufin, L.: Manipulating interpolated data is easier than you thought. In: Proceedings of the 26th International Conference on Very Large Data Bases (VLDB 2000), pp. 156–165. Cairo, Egypt (2000)Google Scholar
  44. 44.
    44. Kemp, Z., Kowalczyk, A.: Incorporating the temporal dimension in a GIS. In: Worboys, M.F. (ed.) Innovations in GIS, vol. 1, pp. 89–102. Taylor and Francis, London (1994)Google Scholar
  45. 45.
    45. Moreira, J., Ribeiro, C., Abdessalem, T.: Query operations for moving objects database systems. In: Proceedings of the 8th ACM Symposium on Advances in Geographic Information Systems (GIS 2000), pp. 108–114. Washington, DC (2000)Google Scholar
  46. 46.
    46. Sistla, P., Wolfson, O., Chamberlain, S., Dao, S.: Modeling and querying moving objects. In: Proceedings of the 13th International Conference on Data Engineering (ICDE′97), pp. 422–432. Birmingham, UK (1997)Google Scholar
  47. 47.
    47. Tryfona, N., Hadzilacos, T.: Logical data modelling of spatio-temporal applications: Definitions and a model. In: Proceedings of the 1998 International Database Engineering and Applications Symposium (IDEAS 1998), pp. 14–23. Cardiff, Wales, UK(1998)Google Scholar
  48. 48.
    48. Viqueira, J.R.R., Lorentzos, N.A.: Spatio-temporal SQL. In: Manolopoulos, Y., Evripidou, S., Kakas, A. (eds.) Advances in Informatics—Post-Proceedings 8th Panhellenic Conference in Informatics, no. pp. 50–63. Lecture Notes in Computer Science 2563, Springer-Verlag, Berlin (2003)Google Scholar
  49. 49.
    49. Voigtmann, A.: An object-oriented database kernel for spatio-temporal geo-applications. PhD Thesis, Westf. Wilhelms-Universität Münster, Germany (1997)Google Scholar
  50. 50.
    50. Worboys, M.F.: A unified model for spatial and temporal information. Comput. J. 37(1), 26–34 (1994)CrossRefGoogle Scholar
  51. 51.
    51. Yeh, T., de Cambray, B.: Modeling highly variable spatio-temporal data. In: Proceedings of the 6th Australasian Database Conference (ADC′95), Glenelg/Adelaide, vol. 17, no. 2, pp. 221–230. South Australia (1995)Google Scholar
  52. 52.
    52. PostgreSQL Global Development Group: PostgreSQL 7.2 User's Guide (2001)Google Scholar
  53. 53.
    53. International Business Machines Corporation (IBM): Informix Geodetic DataBlade Module User's Guide, Version 3 (2001)Google Scholar
  54. 54.
    54. Lorentzos, N.A., Mitsopoulos, Y.G.: SQL extension for interval data. IEEE Trans. Knowledge Data Eng. 9(3), 480–499(1997)CrossRefGoogle Scholar
  55. 55.
    55. Viqueira, J.R.R.: Formal extension of the relational model for the management of spatial and spatio-temporal data. PhD Thesis, Computer Science Department, University of A Coruña, Spain (2003)Google Scholar
  56. 56.
    56. Lorentzos, N.A., Darwen, H.: Extension to SQL2 binary operations for temporal data. In: Proceedings of the 3rd HERMIS Conference, pp. 462–469. Athens, Greece (1996) Invited paperGoogle Scholar
  57. 57.
    57. Viqueira, J.R.R., Lorentzos, N.A., Brisaboa, N.R.: Management of continuous spatial changes. In: Proceedings of the 9th Panhellenic Conference on Informatics, pp. 431–445. Salonica, Greece(2003)Google Scholar
  58. 58.
    58. Winter, S., Frank, A.U.: Topology in raster and vector representation. GeoInformatica 4(1), 35–65 (2000)zbMATHCrossRefGoogle Scholar
  59. 59.
    59. Egenhofer, M.J., Herring, J.R.: Categorizing binary topological relations between regions, lines, and points in geographic databases. Technical Report, Department of Surveying Engineering, University of Maine (1992)Google Scholar
  60. 60.
    60. Pavlidis, T.: Algorithms for graphics and image processing. Computer Science (1982)Google Scholar
  61. 61.
    61. International Organization for Standardization (ISO): SQL3 Part 7: Temporal, Working Draft. ISO/IEC JTC 1/SC 21/WG 3: MCI-009 (1996)Google Scholar
  62. 62.
    62. International Organization for Standardization (ISO): More Elements of Type PERIOD, Expert's Contribution. ISO/IEC JTC 1/SC 21/WG 3: MCI-044 (1996)Google Scholar
  63. 63.
    63. International Organization for Standardization (ISO): Periods of Integers, Expert's Contribution. ISO/IEC JTC 1/SC 21/WG 3: MAD-151 (1996)Google Scholar
  64. 64.
    64. Viqueira, J.R.R.: Relational algebra for spatio-temporal data management. In: Proceedings of the EDBT 2000, PhD Workshop, pp. 43–46. Konstanz, Germany (2000)Google Scholar
  65. 65.
    65. Lorentzos, N.A., Poulovassilis, A., Small, C.: Manipulation operations for an interval-extended relational model. Data Knowledge Eng. 17, 1–29 (1995)zbMATHCrossRefGoogle Scholar
  66. 66.
    66. Date, C.J., Darwen, H., Lorentzos, N.A.: Temporal Data and the Relational Model. Morgan Kaufmann, San Fransisco, CA (2003)Google Scholar
  67. 67.
    67. Clementini, E., di Felice, P.: A model for representing topological relationships between complex geometric features in spatial databases. Inf. Sci. 90(1–4), 121–136 (1996)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Systems Laboratory, Department of Electronics and Computer Science, Instituto de Investigaciones TecnológicasUniversity of Santiago de CompostelaSantiago de Compostela, A CoruñaSpain
  2. 2.Informatics LaboratoryAgricultural University of AthensAthensGreece

Personalised recommendations