Advertisement

The VLDB Journal

, Volume 14, Issue 4, pp 357–372 | Cite as

Adaptive website recommendations with AWESOME

  • Andreas ThorEmail author
  • Nick Golovin
  • Erhard Rahm
Regular Paper

Abstract

Recommendations are crucial for the success of large websites. While there are many ways to determine recommendations, the relative quality of these recommenders depends on many factors and is largely unknown. We present the architecture and implementation of AWESOME (Adaptive website recommendations), a data warehouse-based recommendation system. It allows the coordinated use of a large number of recommenders to automatically generate website recommendations. Recommendations are dynamically selected by efficient rule-based approaches utilizing continuously measured user feedback on presented recommendations. AWESOME supports a completely automatic generation and optimization of selection rules to minimize website administration overhead and quickly adapt to changing situations. We propose a classification of recommenders and use AWESOME to comparatively evaluate the relative quality of several recommenders for a sample website. Furthermore, we propose and evaluate several rule-based schemes for dynamically selecting the most promising recommendations. In particular, we investigate two-step selection approaches that first determine the most promising recommenders and then apply their recommendations for the current situation. We also evaluate one-step schemes that try to directly determine the most promising recommendations.

Keywords

Adaptive web recommendations Web data warehouse Classification of recommendation algorithms Web usage mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jameson, A., Konstan, J., Riedl, J.: AI techniques for personalized recommendation. In: Tutorial at 18th National Conference on Artificial Intelligence (AAAI) (2002)Google Scholar
  2. 2.
    Koutri, M., Daskalaki, S., Avouris, N.: Adaptive interaction with web sites: an overview of methods and techniques. In: Proceedings of the 4th International Workshop on Computer Science and Information Technologies (CSIT) (2002)Google Scholar
  3. 3.
    Linden, G., Smith, B., York, J.: Amazon.com Recommendations: item-to-item collaborative filtering. IEEE Distribut. Syst. Online 4(1) (2003)Google Scholar
  4. 4.
    Perkowitz, M., Etzioni, O.: Adaptive web sites: an AI challenge. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence. Morgan Kaufmann (1997)Google Scholar
  5. 5.
    Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for mining world wide web browsing patterns. Knowledge Inform. Syst. 1(1) (1999)Google Scholar
  6. 6.
    Tan, P., Kumar, V.: Modeling of web robot navigational patterns. In: Proceedings of the ACM WebKDD Workshop (2000)Google Scholar
  7. 7.
    Spiliopoulou, M., Mobasher, B., Berendt, B., Nakagawa, M.: A framework for the evaluation of session reconstruction heuristics in web usage analysis. Special issue on mining web-based data for e-business applications. INFORMS J. Comput. 15(2) (2003)Google Scholar
  8. 8.
    Kimball, R., Merz, R.: The Data Webhouse Toolkit – Building Web-Enabled Data Warehouse. Wiley Computer Publishing, New York (2000)Google Scholar
  9. 9.
    Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adapt. Interact. 12(4) (2002)Google Scholar
  10. 10.
    Schafer, J.B., Konstan, J.A., Riedl, J.: Electronic commerce recommender applications. J. Data Min. Knowledge Discov. 5(1/2) (2001)Google Scholar
  11. 11.
    Terveen, L., Hill, W.: Human–computer collaboration in recommender systems. In: Carroll, J. (ed.) Human Computer Interaction in the New Millenium. Addison-Wesley, New York (2001)Google Scholar
  12. 12.
    Kushmerick, N., McKee, J., Toolan, F.: Toward zero-input personalization: referrer-based page recommendation. In: Proceedings of the International Conference on Adaptive Hypermedia and Adaptive Web-based Systems (2000)Google Scholar
  13. 13.
    Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Discovery and evaluation of aggregate usage profiles for web personalization. Data Min. Knowledge Discov. 6(1) (2002)Google Scholar
  14. 14.
    Cosley, D., Lawrence, S., Pennock, D.M.: REFEREE: an open framework for practical testing of recommender systems using ResearchIndex. In: Proceedings of the 28th VLDB Conference (2002)Google Scholar
  15. 15.
    Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data cube: a relational aggregation operator generalizing groupby, cross-tab, and sub-total. In: Proceedings of the 12th EEE International Conference on Data Engineering (ICDE) (1995)Google Scholar
  16. 16.
    Witten, I.H., Frank, E.: Data Mining. Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann (2000)Google Scholar
  17. 17.
    Golovin, N., Rahm, E.: Reinforcement learning architecture for web recommendations. In: Proceedings of the International Conference on Information Technology (ITCC), Vol. 1, Las Vegas (2004)Google Scholar
  18. 18.
    Golovin, N., Rahm, E.: Automatic optimization of web recommendations using feedback and ontology graphs. In: Proceedings of the International Conference on Web Engineering (ICWE), Sydney, LNCS 3579, Springer Verlag (2005), submitted for publicationGoogle Scholar
  19. 19.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA (1998)Google Scholar
  20. 20.
    Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-T.: Web usage mining: discovery and applications of usage patterns from web Data. SIGKDD Explor. 1(2) (2000)Google Scholar
  21. 21.
    Schafer, J.B., Konstan, J.A., Riedl, J.: Meta-recommendation systems: user-controlled integration of diverse recommendations. In: Proceedings of the 11th International Conference on Information and Knowledge Management (CIKM) (2002)Google Scholar
  22. 22.
    Mobasher, B., Nakagawa, M.: A hybrid web personalization model based on site connectivity. In: Proceedings of the ACM WebKDD Workshop (2003)Google Scholar
  23. 23.
    Shahabi, C., Chen, Y.: An adaptive recommendation system without explicit acquisition of user relevance feedback. Distribut. Parallel Databases 14(2) (2003)Google Scholar
  24. 24.
    Lim, M., Kim, J.: An adaptive recommendation system with a coordinator agent. In: Proceedings of the First Asia-Pacific Conference on Web Intelligence: Research and Development (2001)Google Scholar
  25. 25.
    Kim, K., Carroll, J.M., Rosson, M.B.: An empirical study of web personalization assistants: supporting end-users in web information systems. In: Proceedings of the IEEE 2002 Symposium on Human Centric Computing Languages and Environments (2002)Google Scholar
  26. 26.
    Geyer-Schulz, A., Hahsler, M.: Evaluation of recommender algorithms for an internet information broker based on simple association rules and on the repeat-buying theory. In: Proceedings of the ACM WebKDD Workshop (2002)Google Scholar
  27. 27.
    Heer, J., Chi, E.H.: Separating the swarm: categorization methods for user sessions on the web. In: Proceedings of the Conference on Human Factors in Computing Systems (2002)Google Scholar
  28. 28.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for e-commerce. In: Proceedings of ACM E-Commerce (2000)Google Scholar
  29. 29.
    Hayes, C., Massa, P., Avesani, P., Cunningham, P.: An on-line evaluation framework for recommender systems. In: Proceedings of Workshop on Personalization and Recommendation in E-Commerce (2002)Google Scholar
  30. 30.
    Shahabi, C., Banaei-Kashani, F., Faruque, J.: A reliable, efficient, and scalable system for web usage data acquisition. In: Proceedings of the ACM WebKDD Workshop (2001)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.University of LeipzigLeipzigGermany

Personalised recommendations