The VLDB Journal

, Volume 15, Issue 2, pp 165–190 | Cite as

Modeling and querying moving objects in networks

  • Ralf Hartmut Güting
  • Victor Teixeira de Almeida
  • Zhiming Ding
Regular Paper

Abstract

Moving objects databases have become an important research issue in recent years. For modeling and querying moving objects, there exists a comprehensive framework of abstract data types to describe objects moving freely in the 2D plane, providing data types such as moving point or moving region. However, in many applications people or vehicles move along transportation networks. It makes a lot of sense to model the network explicitly and to describe movements relative to the network rather than unconstrained space, because then it is much easier to formulate in queries relationships between moving objects and the network. Moreover, such models can be better supported in indexing and query processing. In this paper, we extend the ADT approach by modeling networks explicitly and providing data types for static and moving network positions and regions. In a highway network, example entities corresponding to these data types are motels, construction areas, cars, and traffic jams. The network model is not too simplistic; it allows one to distinguish simple roads and divided highways and to describe the possible traversals of junctions precisely. The new types and operations are integrated seamlessly into the ADT framework to achieve a relatively simple, consistent and powerful overall model and query language for constrained and unconstrained movement.

Keywords

Moving object Network Spatio-temporal Data type ADT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sistla, A.P., Wolfson, O., Chamberlain, S., Dao, S.: Modeling and querying moving objects. In: Proceedings of the 13th International Conference on Data Engineering (ICDE), pp. 422–432 (1997)Google Scholar
  2. 2.
    Wolfson, O., Chamberlain, S., Dao, S., Jiang, L., Mendez, G.: Cost and imprecision in modeling the position of moving objects. In: Proceedings of the 14th International Conference on Data Engineering (ICDE), pp. 588–596 (1998)Google Scholar
  3. 3.
    Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving object databases: Issues and solutions. In: Proceedings of the 10th International Conference on Scientific and Statistical Database Management (SSDBM), pp. 111–122 (1998)Google Scholar
  4. 4.
    Wolfson, O., Sistla, A.P., Chamberlain, S., Yesha, Y.: Updating and querying databases that track mobile units. Distributed and Parallel Databases 7(3), 257–387 (1999)CrossRefGoogle Scholar
  5. 5.
    Koubarakis, M., Pernici, B., Schek, H.J., Scholl, M., Theodoulidis, B., Tryfona, N., Sellis, T., Frank, A.U., Grumbach, S., Güting, R.H., Jensen, C.S., Lorentzos, N., Manolopoulos, Y., Nardelli, E. (eds.): Spatio-temporal databases: The CHOROCHRONOS approach. Springer-Verlag, Lecture Notes in Computer Science 2520 (2003)Google Scholar
  6. 6.
    Erwig, M., Güting, R.H., Schneider, M., Varzigiannis, M.: Spatio-temporal data types: An approach to modeling and querying moving objects in databases. Geolnformatica 3(3), 265–291 (1999)Google Scholar
  7. 7.
    Güting, R.H., Bohlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM Transactions on Database Systems 25(1), 1–42 (2000)CrossRefGoogle Scholar
  8. 8.
    Forlizzi, L., Güting, R.H., Nardelli, E., Schneider, M.: A data model and data structures for moving objects databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 319–330 (2000)Google Scholar
  9. 9.
    Cotelo Lema, J.A., Forlizzi, L., Güting, R.H., Nardelli, E., Schneider, M.: Algorithms for moving objects databases. The Computer Journal 46(6), 680–712 (2003)CrossRefMATHGoogle Scholar
  10. 10.
    Grumbach, S., Rigaux, P., Segoufin, L.: The DEDALE system for complex spatial queries. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 213–224 (1998)Google Scholar
  11. 11.
    Rigaux, P., Scholl, M., Segoufin, L., Grumbach, S.: Building a constraint-based spatial database system: Model, languages, and implementation. Information Systems 28(6), 563–595 (2003)CrossRefMATHGoogle Scholar
  12. 12.
    Grumbach, S., Rigaux, P., Segoufin, L.: Spatio-temporal data handling with constraints. Geolnformatica 5(1), 95–115 (2001)CrossRefMATHGoogle Scholar
  13. 13.
    Chomicki, J., Revesz, P.: Constraint-based interoperability of spatio-temporal databases. In: Proceedings of the 5th International Symposium on Large Spatial Databases (SSD), pp. 142–161 (1997)Google Scholar
  14. 14.
    Chomicki, J., Revesz, P.: A geometric framework for specifying spatiotemporal objects. In: Proceedings of the 6th International Workshop on Temporal Representation and Reasoning (TIME), pp. 41–46 (1999)Google Scholar
  15. 15.
    Su, J., Xu, H., Ibarra, O.H.: Moving objects: Logical relationships and queries. In: Proceedings of the 7th International Symposium on Spatial and Temporal Databases (SSTD), pp. 3–19 (2001)Google Scholar
  16. 16.
    Mokhtar, H., Su, J., Ibarra, O.H.: On moving object queries. In: Proceedings of the ACM Symposium on Principles of Database Systems (PODS), pp. 188–198 (2002)Google Scholar
  17. 17.
    Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. In: Proceedings of the 19th Symposium on Principles of Database Systems, Dallas, Texas, pp. 175–186 (2000)Google Scholar
  18. 18.
    Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in query processing for moving object trajectories. In: Proceedings of the 26th Int. Conference on Very Large Data Bases (Cairo, Egypt), pp. 395–406 (2000)Google Scholar
  19. 19.
    Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Efficient indexing of spatiotemporal objects. In: Proceedings of the 8th International Conference on Extending Database Technology (EDBT, Prague, Czech Republic), pp. 251–268 (2002)Google Scholar
  20. 20.
    Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In: Proceedings of the 7th International Symposium on Spatial and Temporal Databases (SSTD), pp. 79–96 (2001)Google Scholar
  21. 21.
    Tao, Y., Papadias, D.: Spatial queries in dynamic environments. ACM Transactions on Database Systems 28(2), 101–139 (2003)CrossRefGoogle Scholar
  22. 22.
    Yanagisawa, Y., Akahani, J., Satoh, T.: Shape-based similarity query for trajectory of mobile objects. In: Proceedings of the 4th International Conference on Mobile Data Management (MDM, Melbourne, Australia), pp. 63–77 (2003)Google Scholar
  23. 23.
    Theodoridis, Y., Silva, J.R.O., Nascimento, M.A.: On the generation of spatiotemporal datasets. In: Proceedings of the 6th Int. Symposium on Spatial Databases (Hong Kong, China), pp. 147–164 (1999)Google Scholar
  24. 24.
    Frentzos, R.: Indexing moving objects on fixed networks. In: Proceedings of the 8th International Symposium on Spatial and Temporal Databases (SSTD), pp. 289–305 (2003)Google Scholar
  25. 25.
    Pfoser, D., Jensen, C.S.: Indexing of network constrained moving objects. In: Proceedings of the 11th International Symposium on Advances in Geographic Information Systems (ACM-GIS), pp. 25–32 (2003)Google Scholar
  26. 26.
    Shababi, C., Kolahdouzan, M.R., Sharifzadeh, M.: A road network embedding technique for K-nearest neighbor search in moving objects databases. Geolnformatica 7(3), 255–273 (2003)CrossRefGoogle Scholar
  27. 27.
    Jensen, C.S., Kolavr, J., Pedersen, T.B., Timko, I.: Nearest neighbor queries in road networks. In: Proceedings of the llth ACM Symposium on Advances in Geographic Information Systems (ACM-GIS, New Orleans, Louisiana), pp. 1–8 (2003)Google Scholar
  28. 28.
    Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: Proceedings of the 29th Conference on Very Large Databases (VLDB), pp. 790–801 (2003)Google Scholar
  29. 29.
    Brinkhoff, T.: A framework for generating network-based moving objects. Geolnformatica 6(2), 153–180 (2002)MATHCrossRefGoogle Scholar
  30. 30.
    Jensen, C.S., Pedersen, T.B., Speicys, L., Timko, I.: Data modeling for mobile services in the real world. In: Proceedings of the 8th International Symposium on Spatial and Temporal Databases (SSTD), pp. 1–9 (2003)Google Scholar
  31. 31.
    Scarponcini, P.: Generalized model for linear referencing in transportation. Geolnformatica 6(1), 35–55 (2002)MATHCrossRefGoogle Scholar
  32. 32.
    Oracle Spatial Linear Referencing System User’s Guide: Release 8.1.6., Oracle Press (2000)Google Scholar
  33. 33.
    Güting, R.H.: Second-order signature: A tool for specifying data models, query processing, and optimization. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 277–286 (1993)Google Scholar
  34. 34.
    Chon, H.D., Agrawal, D., El Abbadi, A.: FATES: Finding a time dependent shortest path. In: Proceedings of the 4th International Conference on Mobile Data Management (MDM), pp. 165–180 (2003)Google Scholar
  35. 35.
    Carey, M.J., Kossmann, D.: On saying “enough already!” in SQL. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 219–230 (1997)Google Scholar
  36. 36.
    Dieker, S., Güting, R.H.: Plug and play with query algebras: Secondo. A generic DBMS development environment. In: Proceedings of the International Database Engineering and Applications Symposium (IDEAS), pp. 380–390 (2000)Google Scholar
  37. 37.
    Güting, R.H., Behr, T., de Almeida, V.T., Ding, Z., Hoffmann, F., Spiekermann, M.: Secondo: An extensible DBMS architecture and prototype. Fernuniversität Hagen, Informatik-Report 313, (2004)Google Scholar
  38. 38.
    Dieker, S., Güting, R.H.: Efficient handling of tuples with embedded large objects. Data & Knowledge Engineering 32(3), 247–269 (2000)CrossRefMATHGoogle Scholar
  39. 39.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the determination of minimum cost paths. IEEE Transactions on System Science and Cybernetics, SSC- 4(2), 100–107 (1968)CrossRefGoogle Scholar
  40. 40.
    Nilsson, N.J.: Principles of Artificial Intelligence. Springer-Verlag (1982)Google Scholar
  41. 41.
    Becker, B., Gschwind, S., Ohler, T., Seeger, B., Widmayer, P.: An asymptotically optimal multiversion B-Tree. VLDB Journal 5(4), 264–275 (1996)Google Scholar
  42. 42.
    Cruz, I.F., Mendelzon, A.O., Wood, P.T.: A graphical query language supporting recursion. In: Proceedings ACM SIGMOD, pp. 323–330 (1987)Google Scholar
  43. 43.
    Gyssens, M., Paredaens, J., van Gucht, D.: A graph-oriented object database model. In: Proceedings ACM Conference on Principles of Database Systems (PODS), pp. 417–424 (1990)Google Scholar
  44. 44.
    Mannino, M., Shapiro, L.: Extensions to query languages for graph traversal problems. IEEE Transactions on Knowledge and Data Engineering 2, 353–363 (1990)CrossRefGoogle Scholar
  45. 45.
    Erwig, M., Güting, R.H.: Explicit graphs in a functional model for spatial databases. IEEE Transactions on Knowledge and Data Engineering 6(5), 787–804 (1994)CrossRefGoogle Scholar
  46. 46.
    Güting, R.H.: Modeling and querying graphs in databases. In: Proceedings of the 20th International Conference on Very Large Databases, pp. 297–308 (1994)Google Scholar
  47. 47.
    Shekhar, S., Kohli, A., Coyle, M.: Path computation algorithms for advanced traveller information systems. In: Proceedings of the 9th International Conference on Data Engineering (ICDE, Vienna, Austria), pp. 31–39 (1993)Google Scholar
  48. 48.
    Shekhar, S., Liu, D.R.: CCAM: A connectivity-clustered access method for networks and network computations. IEEE Transactions on Knowledge and Data Engineering 9(1), 102–119 (1997)CrossRefGoogle Scholar
  49. 49.
    Huang, Y.W., Jing, N., Rundensteiner, E.A.: Path queries for transportation networks: Dynamic reordering and sliding window paging techniques. In: Proceedings of the 4th ACM-GIS Conference, pp. 9–16 (1996)Google Scholar
  50. 50.
    Huang, Y.W., Jing, N., Rundensteiner, E.A.: Integrated query processing strategies for spatial path queries. In: Proceedings of the 13th International Conference on Data Engineering (ICDE, Birmingham, U.K.), pp. 477–486 (1997)Google Scholar
  51. 51.
    Vazirgiannis, M., Wolfson, O.: A spatiotemporal query language for moving objects on road networks. In: Proceedings of the 7th International Symposium on Spatial and Temporal Databases (SSTD), pp. 20–35 (2001)Google Scholar
  52. 52.
    Hage, C., Jensen, C.S., Pedersen, T.B., Speicys, L., Timko, I.: Integrated data management for mobile services in the real world. In: Proceedings of the 29th International Conference on Very Large Databases (VLDB, Berlin, Germany), pp. 1019–1030 (2003)Google Scholar
  53. 53.
    Speicys, L., Jensen, C.S., Kligys, A.: Computational data modeling for network-constrained moving objects. In: Proceedings of the llth ACM Symposium on Advances in Geographic Information Systems (ACM-GIS, New Orleans, Louisiana), pp. 118–125 (2003)Google Scholar
  54. 54.
    Ding, Z., Güting, R.H.: Modeling temporally variable transportation networks. In: Proceedings of the 9th Int. Conference on Database Systems for Advanced Applications (DASFAA, Jeju Island, Korea), pp. 154–168 (2004)Google Scholar
  55. 55.
    Ding, Z., Güting, R.H.: Managing moving objects on dynamic transportation networks. In: Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM, Santorini Island, Greece), pp. 287–296 (2004)Google Scholar
  56. 56.
    Almeida, V., Güting, R.H.: Indexing the trajectories of moving objects in networks. Geolnformatica 9(1), 33–60 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Ralf Hartmut Güting
    • 1
  • Victor Teixeira de Almeida
    • 1
  • Zhiming Ding
    • 1
  1. 1.LG Datenbanksysteme für neue AnwendungenFernUniversität HagenHagenGermany

Personalised recommendations