The VLDB Journal

, Volume 16, Issue 2, pp 165–178 | Cite as

Using a distributed quadtree index in peer-to-peer networks

Regular Paper

Abstract

Peer-to-peer (P2P) networks have become a powerful means for online data exchange. Currently, users are primarily utilizing these networks to perform exact-match queries and retrieve complete files. However, future more data intensive applications, such as P2P auction networks, P2P job-search networks, P2P multiplayer games, will require the capability to respond to more complex queries such as range queries involving numerous data types including those that have a spatial component. In this paper, a distributed quadtree index that adapts the MX-CIF quadtree is described that enables more powerful accesses to data in P2P networks. This index has been implemented for various prototype P2P applications and results of experiments are presented. Our index is easy to use, scalable, and exhibits good load-balancing properties. Similar indices can be constructed for various multidimensional data types with both spatial and non-spatial components.

Keywords

Quadtrees Spatial data structures Distributed data structures Peer-to-peer networks 

References

  1. 1.
    Aboulnaga, A., Naughton, J.F.: Accurate estimation of the cost of spatial selections. In: Proceedings of the 16th IEEE International Conference on Data Engineering, pp. 123–134. San Diego, CA (2000)Google Scholar
  2. 2.
    Andrzejak, A., Xu, Z.: Scalable, efficient range queries for Grid information services. In: Proceedings of the IEEE International Conference on Peer-to-Peer Computing, pp. 33–40. Linkoping, Sweden (2002)Google Scholar
  3. 3.
    Aref, W.G., Samet, H.: Extending a DBMS with spatial operations. In: Proceedings of Advances in Spatial Databases, SSD'91, pp. 299–318. Zurich, Switzerland (1991)Google Scholar
  4. 4.
    Aspnes, J., Kirsch, J., Krishnamurthy, A.: Load balancing and locality in range-queriable data structures. In: Proceedings of the Symposium on Principles of Distributed Computing, pp. 115–124. St. Johns, Canada (2004)Google Scholar
  5. 5.
    Aspnes, J., Shah, G.: Skip graphs. In: Proceedings of SODA, pp. 384–293. Baltimore, MD (2003)Google Scholar
  6. 6.
    Banaei-Kashani, F., Shahabi, C.: SWAM: A family of access methods for similarity-search in peer-to-peer data networks. In: Proceedings of the Conference on Information and Knowledge Management-CIKM, pp. 304–313. Washington, DC (2004)Google Scholar
  7. 7.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: Supporting scalable multi-attribute range queries. In: Proceedings of the ACM SIGCOMM'04, pp. 353–366. Portland, OR (2004)Google Scholar
  9. 9.
    Cai, M., Frank, M., Chen, J., Szekely, P.: MAAN: A multi-attribute addressable network for Grid information services. In: Proceedings of the International Workshop on Grid Computing, pp. 184–191. Phoenix, AZ (2003)Google Scholar
  10. 10.
    Cheng, W.C., Chou, C.F., Golubchik, L., Khuller, S., Wan, Y.C.: Large-scale data collection: a coordinated approach. In: Proceedings of the IEEE InfoCom'03, pp. 218–228. San Francisco, CA (2003)Google Scholar
  11. 11.
    Crainiceanu, A., Linga, P., Gehrke, J., Shanmugasundaram, J.: Querying peer-to-peer networks using P-Trees. In: Proceedings of the ACM SIGMOD'04, WebDB Workshop, pp. 25–30. Paris, France (2004)Google Scholar
  12. 12.
    Daskos, A., Ghandeharizadeh, S., An, X.: PePeR: A distributed range addressing space for P2P systems. In: Proceedings of the International Workshop on Databases, Information Systems, and Peer-to-Peer Computing (held in conjunction with VLDB), pp. 200–218. Berlin, Germany (2003)Google Scholar
  13. 13.
    Demirbas, M., Ferhatosmanoglu, H.: Peer-to-peer spatial queries in sensor networks. In: Proceedings of the IEEE International Conference on Peer-to-Peer Computing, pp. 32–39. Linkoping, Sweden (2003)Google Scholar
  14. 14.
    Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned data with applications to peer-to-peer systems. In: Proceedings of the International Conference on Very Large Databases-VLDB, pp. 444–455. Toronto, Canada (2004)Google Scholar
  15. 15.
    Ganesan, P., Yang, B., Garcia-Molina, H.: One torus to rule them all: Multidimensional queries in P2P systems. In: Proceedings of the ACM SIGMOD'04, WebDB Workshop, pp. 19–24. Paris, France (2004)Google Scholar
  16. 16.
    Gao, J., Guibas, L.J., Hershberger, J., Zhang, L.: Fractionally cascaded information in a sensor network. In: Proceedings of the IPSN'04, pp. 311–319. Berkeley, CA (2004)Google Scholar
  17. 17.
    Gupta, A., Agrawal, D., El Abbadi, A.: Approximate range selection queries in peer-to-peer systems. In: Proceedings of the First Biennial Conference on Innovative Data Systems Research. Asilomar, CA (2003)Google Scholar
  18. 18.
    Harwood, A., Karunasekera, S., Nutanong, S., Tanin, E., Truong, M.: Complex applications over peer-to-peer networks. In: Poster Proceedings of the ACM Middleware'04, p. 327. Toronto, Canada (2004)Google Scholar
  19. 19.
    Kedem, G.: The quad-CIF tree: a data structure for hierarchical on-line algorithms. In: Proceedings of the 19th Design Automation Conference, pp. 352–357. Las Vegas, NV (1982)Google Scholar
  20. 20.
    Kothari, A., Agrawal, D., Gupta, A., Suri, S.: Range addressable network: A P2P cache architecture for data ranges. In: Proceedings of the IEEE International Conference on Peer-to-Peer Computing, pp. 14–22. Linkoping, Sweden (2003)Google Scholar
  21. 21.
    Li, J., Jannotti, J., Couto, D.S.J.D., Karger, D.R., Morris, R.: A scalable location service for geographical ad hoc routing. In: Proceedings of the ACM MOBICOM'00, pp. 120–130. Boston, MA (2000)Google Scholar
  22. 22.
    Li, X., Kim, Y.J., Govidan, R., Hong, W.: Multi-dimensional range queries in sensor networks. In: Proceedings of the ACM SenSys'03, pp. 63–75. Los Angeles, CA (2003)Google Scholar
  23. 23.
    Litwin, W., Risch, T.: LH*g: A high-availability scalable distributed data structure by record grouping. IEEE Trans. Knowl. Data Eng. 14(4), 923–927 (2002)CrossRefGoogle Scholar
  24. 24.
    Misra, A., Castro, P., Lee, J.: CLASH: A protocol for Internet-scale utility-oriented distributed computing. In: Proceedings of the International Conference on Distributed Computing Systems, pp. 273–281. Tokyo, Japan (2004)Google Scholar
  25. 25.
    Mondal, A., Yilifu, Kitsuregawa, M.: P2PR-tree: An R-tree-based spatial index for peer-to-peer environments. In: Proceedings of the International Workshop on Peer-to-Peer Computing and Databases (held in conjunction with EDBT), pp. 516–525. Heraklion-Crete, Greece (2004)Google Scholar
  26. 26.
    Ramabhadran, S., Ratnasamy, S., Hellerstein, J.M., Shenker, S.: Prefix hash tree. In: Proceedings of ACM PODC, p. 368. St. Johns, Canada (2004)Google Scholar
  27. 27.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network. In: Proceedings of the ACM SIGCOMM'01, pp. 161–172. San Diego, CA (2001)Google Scholar
  28. 28.
    Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In: Proceedings of the ACM Middleware'01, pp. 329–350. Heidelberg, Germany (2001)Google Scholar
  29. 29.
    Sahin, O.D., Gupta, A., Agrawal, D., El Abbadi, A.: A peer-to-peer framework for caching range queries. In: Proceedings of the 20th IEEE International Conference on Data Engineering, pp. 165–176. Boston, MA (2004)Google Scholar
  30. 30.
    Samet, H.: Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison-Wesley, Reading, MA (1990)Google Scholar
  31. 31.
    Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA (1990)Google Scholar
  32. 32.
    Samet, H.: Foundations of Multidimensional Data Structures. Morgan Kaufmann, San Francisco (2005)Google Scholar
  33. 33.
    Sevcik, K., Koudas, N.: Filter trees for managing spatial data over a range of size granularities. In: Proceedings of the International Conference on Very Large Databases-VLDB, pp. 16–27. Mumbai, India (1996)Google Scholar
  34. 34.
    Silaghi, B., Bhattacharjee, B., Keleher, P.: Query routing in the TerraDir distributed directory. In: Proceedings of the SPIE ITCOM'02. Boston, MA (2002)Google Scholar
  35. 35.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for Internet applications. In: Proceedings of the ACM SIGCOMM'01, pp. 149–160. San Diego, CA (2001)Google Scholar
  36. 36.
    Tanin, E., Harwood, A., Samet, H., Nutanong, S., Truong, M.: A serverless 3D world. In: Proceedings of the Symposium on Advances in Geographic Information Systems, pp. 157–165. Arlington, VA (2004)Google Scholar
  37. 37.
    Ulrich, T.: Loose octrees. In: M. DeLoura (ed.) Game Programming Gems, pp. 444–453. Charles River Media, Rockland, MA (2000)Google Scholar
  38. 38.
    Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.: Tapestry: A resilient global-scale overlay for service deployment. IEEE J. Selected Areas Commun. 22(1), 41–53CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.NICTA Victoria Laboratory, Department of Computer Science and Software EngineeringUniversity of MelbourneVictoriaAustralia
  2. 2.NICTA Victoria Laboratory, Department of Computer Science and Software EngineeringUniversity of MelbourneVictoriaAustralia
  3. 3.Department of Computer Science, Center for Automation Research Institute for Advanced Computer StudiesUniversity of MarylandMarylandUSA

Personalised recommendations