The VLDB Journal

, Volume 15, Issue 2, pp 143–164 | Cite as

Indexing spatiotemporal archives

  • Marios Hadjieleftheriou
  • George Kollios
  • Vassilis J. Tsotras
  • Dimitrios Gunopulos
Regular Paper

Abstract

Spatiotemporal objects – that is, objects that evolve over time – appear in many applications. Due to the nature of such applications, storing the evolution of objects through time in order to answer historical queries (queries that refer to past states of the evolution) requires a very large specialized database, what is termed in this article a spatiotemporal archive. Efficient processing of historical queries on spatiotemporal archives requires equally sophisticated indexing schemes. Typical spatiotemporal indexing techniques represent the objects using minimum bounding regions (MBR) extended with a temporal dimension, which are then indexed using traditional multidimensional index structures. However, rough MBR approximations introduce excessive overlap between index nodes, which deteriorates query performance. This article introduces a robust indexing scheme for answering spatiotemporal queries more efficiently. A number of algorithms and heuristics are elaborated that can be used to preprocess a spatiotemporal archive in order to produce finer object approximations, which, in combination with a multiversion index structure, will greatly improve query performance in comparison to the straightforward approaches. The proposed techniques introduce a query efficiency vs. space tradeoff that can help tune a structure according to available resources. Empirical observations for estimating the necessary amount of additional storage space required for improving query performance by a given factor are also provided. Moreover, heuristics for applying the proposed ideas in an online setting are discussed. Finally, a thorough experimental evaluation is conducted to show the merits of the proposed techniques.

Keywords

Spatiotemporal databases Indexing Moving objects Trajectories 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. In: Proceedings of the ACM Symposium on Principles of Database Systems, pp. 175–186 (2000)Google Scholar
  2. 2.
    Aggarwal, C.C., Agrawal, D.: On nearest neighbor indexing of nonlinear trajectories. In: Proceedings of the ACM Symposium on Principles of Database Systems, pp. 252–259 (2003)Google Scholar
  3. 3.
    Becker, B., Gschwind, S., Ohler, T., Seeger, B., Widmayer, P.: An asymptotically optimal multiversion B-Tree. VLDB J. 5(4), 264–275 (1996)Google Scholar
  4. 4.
    Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust access method for points and rectangles. In: Proceedings of the ACM SIGMOD Conference on Management of Data, pp. 220–231 (1990)Google Scholar
  5. 5.
    Benetis, R., Jensen, C., Karciauskas, G., Saltenis, S.: Nearest neighbor and reverse nearest neighbor queries for moving objects. In: Proceedings of the International Database Engineering and Applications Symposium, pp. 44–53 (2002)Google Scholar
  6. 6.
    Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformatica 6(2), 153–180 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Brinkhoff, T., Weitkämper, J.: Continuous queries within an architecture for querying xml-represented moving objects. In: Proceedings of the Symposium on Advances in Spatial and Temporal Databases, pp. 136–154 (2001)Google Scholar
  8. 8.
    Burton, F., Kollias, J., Kollias, V., Matsakis, D.: Implementation of overlapping B-trees for time and space efficient representation of collection of similar files. Comput. J. 33(3), 279–280 (1990)CrossRefGoogle Scholar
  9. 9.
    Cai, M., Revesz, P.: Parametric R-tree: An index structure for moving objects. In: Proceedings of the International Conference on Management of Data (2000)Google Scholar
  10. 10.
    Chakka, V.P., Everspaugh, A., Patel, J.M.: Indexing large trajectory data sets with seti. In: Proceedings of the Biennial Conference on Innovative Data Systems Research (2003)Google Scholar
  11. 11.
    Chon, H.D., Agrawal, D., El Abbadi, A.: Storage and retrieval of moving objects. In: Proceedings of the International Conference on Mobile Data Management, pp. 173–184 (2001)Google Scholar
  12. 12.
    Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitised line or its caricature. Can. Cartogr. 10(2), 112–122 (1973)Google Scholar
  13. 13.
    Driscoll, J., Sarnak, N., Sleator, D., Tarjan, R.E.: Making data structures persistent. In: Proceedings of the ACM Symposium on Theory of Computing (1986)Google Scholar
  14. 14.
    Driscoll, J., Sarnak, N., Sleator, D., Tarjan, R.E.: Making data structures persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases. In: Proceedings of the ACM SIGMOD Conference on Management of Data, pp. 419–429 (1994)Google Scholar
  16. 16.
    Güuting, R.H., Bhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM Trans. Database Syst. 25(1), 1–42 (2000)CrossRefGoogle Scholar
  17. 17.
    Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proceedings of the ACM SIGMOD Conference Management of Data, pp. 47–57 (1984)Google Scholar
  18. 18.
    Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Efficient indexing of spatiotemporal objects. In: Proceedings of Extending Database Technology, pp. 251–268 (2002)Google Scholar
  19. 19.
    Iwerks, G.S., Samet, H., Smith, K.: Continuous k-nearest neighbor queries for continuously moving points with updates. In: Proceedings of the International Conference on Very Large Data Bases, pp. 512–523 (2003)Google Scholar
  20. 20.
    Kalashnikov, D.V., Prabhakar, S., Hambrusch, S.: Main memory evaluation of monitoring queries over moving objects. Distrib. Parallel Databases 15(2), 117–135 (2004)CrossRefGoogle Scholar
  21. 21.
    Kamel, I., Faloutsos, C.: On packing R-Trees. In: Proceedings of the Conference on Information and Knowledge Management, pp. 490–499 (1993)Google Scholar
  22. 22.
    Keogh, E.J., Chu, S., Hart, D., Pazzani, M.J.: An online algorithm for segmenting time series. In: Proceedings of the International Conference on Management of Data, pp. 289–296 (2001)Google Scholar
  23. 23.
    Kolesnikov, A.: Efficient algorithms for vectorization and polygonal approximation. PhD thesis, University of Joensuu, Finland (2003)Google Scholar
  24. 24.
    Kollios, G., Gunopulos, D., Tsotras, V.J.: On indexing mobile objects. In: Proceedings of the ACM Symposium on Principles of Database Systems, pp. 261–272 (1999)Google Scholar
  25. 25.
    Kollios, G., Tsotras, V.J., Gunopulos, D., Delis, A., Hadjieleftheriou, M.: Indexing animated objects using spatiotemporal access methods. IEEE Trans. Knowl. Data Eng. 13(5), 758–777 (2001)CrossRefGoogle Scholar
  26. 26.
    Kolovson, C., Stonebraker, M.: Segment Indexes: Dynamic indexing techniques for multi-dimensional interval data. In: Proceedings of the ACM SIGMOD Conference on Management of Data, pp. 138–147 (1991)Google Scholar
  27. 27.
    Kumar, A., Tsotras, V.J., Faloutsos, C.: Designing access methods for bitemporal databases. IEEE Trans. Knowl. Data Eng. 10(1), 1–20 (1998)CrossRefGoogle Scholar
  28. 28.
    Leutenegger, S.T., Edgington, J.M., Lopez, M.A.: Str: A simple and efficient algorithm for R-tree packing. In: Proceedings of the International Conference on Data Engineering, pp. 497–506 (1997)Google Scholar
  29. 29.
    Lomet, D., Salzberg, B.: Access methods for multiversion data. In: Proceedings of the ACM Conference on Management of Data, pp. 315–324 (1989)Google Scholar
  30. 30.
    Meratnia, N., de By, R.A.: Aggregation and comparison of trajectories. In: Proceedings of the ACM Symposium on Advances in Geographic Information Systems, pp. 49–54 (2002)Google Scholar
  31. 31.
    Mokbel, M.F., Xiong, X., Aref, W.G.: SINA: Scalable incremental processing of continuous queries in spatiotemporal databases. In: Proceedings of the ACM Conference on Management of Data (2004)Google Scholar
  32. 32.
    Nascimento, M., Silva, J.: Towards historical R-trees. In: Proceedings of the ACM Symposium on Applied Computing (1998)Google Scholar
  33. 33.
    Pagel, B.-U., Six, H.-W., Toben, H., Widmayer, P.: Towards an analysis of range query performance in spatial data structures. In: Proceedings of the ACM Symposium on Principles of Database Systems, pp. 214–221 (1993)Google Scholar
  34. 34.
    Papadias, D., Tao, Y., Zhang, J., Mamoulis, N., Shen, Q., Sun, J.: Indexing and retrieval of historical aggregate information about moving objects. IEEE Data Eng. Bull. 25(2) (2002)Google Scholar
  35. 35.
    Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: Proceedings of the International Conference on Very Large Data Bases, pp. 802–813 (2003)Google Scholar
  36. 36.
    Pavlidis, T., Horovitz, S.L.: Segmentation of plane curves. IEEE Trans. Comput. 23(8), 860–870 (1974)Google Scholar
  37. 37.
    Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in query processing for moving object trajectories. In: Proceedings of the International Conference on Very Large Data Bases, pp. 395–406 (2000)Google Scholar
  38. 38.
    Porkaew, K., Lazaridis, I., Mehrotra, S.: Querying mobile objects in spatio-temporal databases. In: Proceedings of the Symposium on Advances in Spatial and Temporal Databases, pp. 59–78 (2001)Google Scholar
  39. 39.
    Prabhakar, S., Xia, Y., Kalashnikov, D., Aref, W.G., Hambrusch, S.E.: Query indexing and velocity constraint indexing: scalable techniques for continuous queries on moving objects. IEEE Trans. Comput. 51(10), 1–17 (2002)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Saglio, J.-M., Moreira, J.: Oporto: A realistic scenario generator for moving objects. GeoInformatica 5(1), 71–93 (2001)CrossRefGoogle Scholar
  41. 41.
    Saltenis, S., Jensen, C.S.: Indexing of moving objects for location-based services. In: Proceedings of the International Conference on Data Engineering, pp. 463–472 (2002)Google Scholar
  42. 42.
    Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of continuously moving objects. SIGMOD Rec. 29(2), 331–342 (2000)CrossRefGoogle Scholar
  43. 43.
    Salzberg, B., Tsotras, V.J.: Comparison of access methods for time-evolving data. Commun. ACM 31(2), 158–221 (1999)Google Scholar
  44. 44.
    Sellis, T.K., Roussopoulos, N., Faloutsos, C.: The R+- Tree: A dynamic index for multi-dimensional objects. In: Proceedings of the International Conference on Very Large Data Bases, pp. 507–518 (1987)Google Scholar
  45. 45.
    Tao, Y., Faloutsos, C., Papadias, D., Liu, B.: Prediction and indexing of moving objects with unknown motion patterns. In: Proceedings of of the ACM SIGMOD Conference on Management of Data, pp. 611–622 (2004)Google Scholar
  46. 46.
    Tao, Y., Papadias, D.: MV3R-Tree: A spatio-temporal access method for timestamp and interval queries. In: Proceedings of the International Conference on Very Large Data Bases, pp. 431–440 (2001)Google Scholar
  47. 47.
    Tao, Y., Papadias, D.: Time-parameterized queries in spatio-temporal databases. In: Proceedings of the ACM SIGMOD Conference on Management of Data, pp. 334–345 (2002)Google Scholar
  48. 48.
    Tao, Y., Papadias, D.: Performance analysis of R*- Trees with arbitrary node extents. IEEE Trans. Knowl. Data Eng. 16(6), 653–668 (2004)CrossRefGoogle Scholar
  49. 49.
    Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: Proceedings of the International Conference on Very Large Data Bases, pp. 287–298 (2002)Google Scholar
  50. 50.
    Tao, Y., Papadias, D., Zhang, J.: Cost models for overlapping and multi-version structures. ACM Trans. Database Syst. 27(3), 299–342 (2002)CrossRefGoogle Scholar
  51. 51.
    Tao, Y., Sun, J., Papadias, D.: Analysis of predictive spatio-temporal queries. ACM Trans. Database Syst. 28(4), 295–336 (2003)CrossRefGoogle Scholar
  52. 52.
    Tao, Y., Sun, J., Papadias, D.: Selectivity estimation for predictive spatio-temporal queries. In: Proceedings of the International Conference on Data Engineering, pp. 417–428 (2003)Google Scholar
  53. 53.
    Theodoridis, Y., Sellis, T., Papadopoulos, A., Manolopoulos, Y.: Specifications for efficient indexing in spatiotemporal databases. In: Proceedings of the International Conference on Scientific and Statistical Database Management, pp. 123–132 (1998)Google Scholar
  54. 54.
    Theodoridis, Y., Silva, J.R.O., Nascimento, M.: On the generation of spatiotemporal datasets. In: Proceedings of the International Symposium in Spatial Databases, pp. 147–164 (1999)Google Scholar
  55. 55.
    Tzouramanis, T., Vassilakopoulos, M., Manolopoulos, Y.: Overlapping linear quadtrees and spatio-temporal query processing. Comput. J. 43(3), 325–343 (2000)Google Scholar
  56. 56.
    Varman, P.J., Verma, R.M.: An efficient multiversion access structure. IEEE Trans. Knowl. Data Eng. 9(3), 391–409 (1997)CrossRefGoogle Scholar
  57. 57.
    Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings of the International Conference on Data Engineering, pp. 673–684 (2002)Google Scholar
  58. 58.
    Wolfson, O., Sistla, A.P., Chamberlain, S., Yesha, Y.: Updating and querying databases that track mobile units. J. Distrib. Parallel Databases 7(3), 257–387 (1999)CrossRefGoogle Scholar
  59. 59.
    Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial queries. In: Proceedings of the ACM SIGMOD Conference on Management of Data, pp. 443–454 (2003)Google Scholar
  60. 60.
    Zhu, H., Su, J., Ibarra, O.H.: Trajectory queries and octagons in moving object databases. In: Proceedings of the Conference on Information and Knowledge Management, pp. 413–421 (2002)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Marios Hadjieleftheriou
    • 1
  • George Kollios
    • 2
  • Vassilis J. Tsotras
    • 1
  • Dimitrios Gunopulos
    • 1
  1. 1.Computer Science DepartmentUniversity of CaliforniaRiversideUSA
  2. 2.Computer Science DepartmentBoston UniversityBostonUSA

Personalised recommendations