The VLDB Journal

, Volume 14, Issue 2, pp 238–256 | Cite as

Indexing mobile objects using dual transformations

  • George Kollios
  • Dimitris Papadopoulos
  • Dimitrios Gunopulos
  • Vassilis J. Tsotras
Article

Abstract.

With the recent advances in wireless networks, embedded systems, and GPS technology, databases that manage the location of moving objects have received increased interest. In this paper, we present indexing techniques for moving object databases. In particular, we propose methods to index moving objects in order to efficiently answer range queries about their current and future positions. This problem appears in real-life applications such as predicting future congestion areas in a highway system or allocating more bandwidth for areas where a high concentration of mobile phones is imminent. We address the problem in external memory and present dynamic solutions, both for the one-dimensional and the two-dimensional cases. Our approach transforms the problem into a dual space that is easier to index. Important in this dynamic environment is not only query performance but also the update processing, given the large number of moving objects that issue updates. We compare the dual-transformation approach with the TPR-tree, an efficient method for indexing moving objects that is based on time-parameterized index nodes. An experimental evaluation shows that the dual-transformation approach provides comparable query performance but has much faster update processing. Moreover, the dual method does not require establishing a predefined query horizon.

Keywords:

Spatiotemporal databases Access methods Mobile objects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal PK, Arge L, Erickson J (2000) Indexing moving points. In: Proceedings of the 19th ACM symposium on principles of database systems, pp 175-186Google Scholar
  2. 2.
    Agarwal PK, Arge L, Erickson J, Franciosa PG, Vitter JS (1998) Efficient searching with linear constraints. In: Proceedings of the 17th ACM symposium on principles of database systems, pp 169-178Google Scholar
  3. 3.
    Agarwal PK, Har-Peled S (2001) Maintaining approximate exten measures of moving points. In: Proceedings of the 12th ACM-SIAM symposium on discrete algorithms, pp 148-157Google Scholar
  4. 4.
    Aggarwal A, Vitter JS (1988) The input/output complexity of sorting and related problems. Commun ACM 31(9):1116-1127CrossRefGoogle Scholar
  5. 5.
    Arge L, Samoladas V, Vitter JS (1999) On two-dimensional indexability and optimal range search indexing. In: Proceedings of the 18th ACM PODS, pp 346-357Google Scholar
  6. 6.
    Arge L, Vitter JS (1996) Optimal dynamic interval management in external memory. In: Proceedings of the 37th annual symposium on foundations of computer science, pp 560-569Google Scholar
  7. 7.
    Basch J, Guibas L, Hershberger J (1997) Data structures for mobile data. In: Proceedings of the 8th ACM-SIAM symposium on discrete algorithms, pp 747-756Google Scholar
  8. 8.
    Beckmann N, Kriegel H, Schneider R, Seeger B (1998) The R*-tree: an efficient and robust access method for points and rectangles. In: Proceedings of ACM SIGMOD, Atlantic City, NJ, pp 322-331Google Scholar
  9. 9.
    Chazelle B, Rosenberg B (1992) Lower bounds on the complexity of simplex range reporting on a pointer machine. In: Proceedings of the 19th international colloquium on automata, languages and programming. Lecture notes in computer science, vol 623. Springer, Berlin Heidelberg New York, pp 439-449Google Scholar
  10. 10.
    Choi Y-J, Chung C-W (2002) Selectivity estimation for spatio-temporal queries to moving objects. In: Proceedings of ACM SIGMOD, Madison, WI, pp 440-451Google Scholar
  11. 11.
    Chomicki J, Revesz P (1999) A geometric framework for specifying spatiotemporal objects. In: Proceedings of the 6th international workshop on time representation and reasoning, pp 41-46Google Scholar
  12. 12.
    Chon HD, Agrawal D, El Abbadi A (2002) Query processing for moving objects with space-time grid storage model. In: Proceedings of the 3rd international conference on mobile data management, pp 121-126Google Scholar
  13. 13.
    Cole R (1986) Searching and storing similar lists. J Algorithms 7(2):202-220MathSciNetMATHGoogle Scholar
  14. 14.
    Driscoll J, Sarnak N, Sleator D, Tarjan RE (1989) Making data structures persistent. J Comput Sys Sci 38(1):86-124CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    http://europa.eu.int/eur-lex/pri/en/oj/dat/ 2002/l\_201/l\_20120020731en00370047.pdf (2002)Google Scholar
  16. 16.
    Elbassioni KM, Elmasry A, Kamel I (2003) An efficient indexing scheme for multi-dimensional moving objects. In: Proceedings of the 9th international conference on database theory (ICDT), pp 425-439Google Scholar
  17. 17.
    Gaede V, Günther O (1998) Multidimensional access methods. ACM Comput Surv 30(2):170-231CrossRefGoogle Scholar
  18. 18.
    Goldstein J, Ramakrishnan R, Shaft U, Yu JB (1997) Processing queries by linear constraints. In: Proceedings of the 16th ACM PODS symposium on principles of database systems, Tucson, AZ, pp 257-267Google Scholar
  19. 19.
    Günther O (1989) The design of the cell tree: an object-oriented index structure for geometric databases. In: Proceedings of the 5th IEEE international conference on data engineering, Los Angeles, pp 598-605Google Scholar
  20. 20.
    Güting RH, Böhlen MH, Erwing M, Jensen CS, Lorentzos NA, Schneider M, Vazirgiannis M (2000) A foundation for representing and querying moving objects. ACM Trans Database Sys 26(1):1-42Google Scholar
  21. 21.
    Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proceedings of ACM SIGMOD, Boston, pp 47-57Google Scholar
  22. 22.
    Hadjieleftheriou M, Kollios G, Gunopulos D, Tsotras V (2003) On-line discovery of dense areas in spatio-temporal databases. In: Proceedings of the 8th SSTD, pp 306-324Google Scholar
  23. 23.
    Hadjieleftheriou M, Kollios G, Tsotras V (2003) Performance evaluation of spatio-temporal selectivity estimation techniques. In: Proceedings of the 15th international conference on scientific and statistical database management, pp 202-211Google Scholar
  24. 24.
    Jagadish HV(1990) On indexing line segments. In: Proceedings of the 16th international conference on very large data bases, Brisbane, Queensland, Australia, pp 614-625Google Scholar
  25. 25.
    Kalashnikov DV, Prabhakar S, Hambrusch SE, Aref WG (2002) Efficient evaluation of continuous range queries on moving objects. In: Proceedings of the 13th international conference DEXA, pp 731-740Google Scholar
  26. 26.
    Kollios G, Gunopulos D, Tsotras V (1999) Nearest neighbor queries in a mobile environment. In: Proceedings of the 1st workshop on spatio-temporal database management, Edinburgh, UK, pp 119-134Google Scholar
  27. 27.
    Kollios G, Gunopulos D, Tsotras V (1999) On indexing mobile objects. In: Proceedings of the 18th ACM symposium on principles of database systems, pp 261-272Google Scholar
  28. 28.
    Lazaridis I, Porkaew K, Mehrotra S (2002) Dynamic queries over mobile objects. In: Proceedings of the 8th international conference on extending database technology, pp 269-286Google Scholar
  29. 29.
    Matousek J (1992) Efficient partition trees. Discrete Comput Geom 8:432-448Google Scholar
  30. 30.
    Mokhtar H, Su J, Ibarra OH (2002) On moving object queries. In: Proceedings of the 21st ACM PODS, pp 188-198Google Scholar
  31. 31.
    Overmars MH (1983) The design of dynamic data structures. Lecture notes in computer science, vol 156. Springer, Berlin Heidelberg New YorkGoogle Scholar
  32. 32.
    Papadias D, Tao Y, Kalnis P, Zhang J (2002) Indexing spatio-temporal data warehouses. In: Proceedings of the 18th international conference on data engineering, pp 166-175Google Scholar
  33. 33.
    Papadopoulos D, Kollios G, Gunopulos D, Tsotras VJ (2002) Indexing mobile objects on the plane. In: Proceedings of the 5th international workshop on mobility in databases and distributed systems (DEXA), Aix-en-Provence, France, pp 693-697Google Scholar
  34. 34.
    Patel J, Chen Y, Chakka VP (2004) STRIPES: an efficient index for predicted trajectories. In: Proceedings of ACM SIGMODGoogle Scholar
  35. 35.
    Pfoser D, Jensen C, Theodoridis Y (2000) Novel approaches in query proceedings for moving objects. In: Proceedings of the 26th international conference on very large data bases, pp 395-406Google Scholar
  36. 36.
    Porkaew K, Lazaridis I, Mehrotra S (2001) Querying mobile objects in spatio-temporal databases. In: Proceedings of the 7th SSTD, pp 59-78Google Scholar
  37. 37.
    Prabhakar S, Xia Y, Kalashnikov DV, Aref W, Hambrusch S (2002) Query indexing and velocity constrained indexing: scalable techniques for continuous queries on moving objects. In: IEEE Trans Comput 51(10):1124-1140Google Scholar
  38. 38.
    Procopiuc CM, Agarwal PK, Har-Peled S (2002) Star-tree: an efficient self-adjusting index for moving objects. In: Proceedings of the 4th workshop on algorithm engineering and experiments, pp 178-193Google Scholar
  39. 39.
    Saltenis S, Jensen C, Leutenegger S, Lopez MA (1999) Indexing the positions of continuously moving objects. Time-Center Technical Report TR-44. http://www.cs.auc.dk/research/DP/tdb/ TimeCenter/TimeCenterPublications/TR-44.pdfGoogle Scholar
  40. 40.
    Saltenis S, Jensen C, Leutenegger S, Lopez MA (2000) Indexing the positions of continuously moving objects. In: Proceedings of ACM SIGMOD, pp 331-342Google Scholar
  41. 41.
    Saltenis S, Jensen CS (2002) Indexing of moving objects for location-based services. In: Proceedings of the 18th international conference on data engineering, San Jose, CA, pp 463-472Google Scholar
  42. 42.
    Samet H (1990) The design and analysis of spatial data structures. Addison-Wesley, Reading, MAGoogle Scholar
  43. 43.
    Sellis T, Roussopoulos N, Faloutsos C (1987) The R+-tree: a dynamic index for multi-dimensional objects. In: Proceedings of the 13th international conference on very large data bases, Brighton, UK, pp 507-518Google Scholar
  44. 44.
    Sistla AP, Wolfson O, Chamberlain S, Dao S (1997) Modeling and querying moving objects. In: Proceedings of the 13th international conference on data engineering, pp 422-432Google Scholar
  45. 45.
    Song Z, Roussopoulos N (2001) K-nearest neighbor search for moving query points. In: Proceedings of the 7th SSTD, Redondo Beach, CA, pp 79-96Google Scholar
  46. 46.
    Subramanian S, Ramaswamy S (1995) The P-range tree: a new data structure for range searching in secondary memory. In: Proceedings of the 6th annual symposium on discrete algorithms, New York, pp 378-387Google Scholar
  47. 47.
    Tao Y, Kollios G, Considine J, Li F, Papadias D (2004) Spatio-temporal aggregation using sketches. In: Proceedings of the 20th international conference on data engineering, pp 214-226Google Scholar
  48. 48.
    Tao Y, Papadias D (2002) Time-parameterized queries in spatio-temporal databases. In: Proceedings of ACM SIGMOD, Madison, WI, pp 334-345Google Scholar
  49. 49.
    Tao Y, Papadias D, Qiongmao S (2002) Continuous nearest neighbor search. In: Proceedings of the 28th international conference on very large data bases, pp 287-298Google Scholar
  50. 50.
    Tao Y, Papadias D, Sun J (2003) The TPR*-tree: an optimized spatio-temporal access method for predictive queries. In: Proceedings of the 29th international conference on very large data bases, pp 790-801Google Scholar
  51. 51.
    Tao Y, Sun J, Papadias D (2003) Selectivity estimation for predictive spatio-temporal queries. In: Proceedings of the 19th international conference on data engineering, Bangalore, India, pp 417-428Google Scholar
  52. 52.
    Tayeb J, Olusoy O, Wolfson O (1998) A quadtree-based dynamic attribute indexing method. Comput J 41(3):185-200Google Scholar
  53. 53.
    Wolfson O, Chamberlain S, Dao S, Jiang L, Mendez G (1998) Cost and imprecision in modeling the position of moving objects. In: Proceedings of the 14th international conference on data engineering, Orlando, FL, pp 588-596Google Scholar
  54. 54.
    Wolfson O, Xu B, Chamberlain S, Jiang L (1998) Moving objects databases: issues and solutions. In: Proceedings of the 11th international conference on scientific and statistical database management, Capri, Italy, pp 111-122Google Scholar
  55. 55.
    Zhu H, Su J, Ibarra OH (2002) Trajectory queries and octagons in moving object databases. In: Proceedings of the 11th ACM international conference on information and knowledge management, pp 413-421Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  • George Kollios
    • 1
  • Dimitris Papadopoulos
    • 2
  • Dimitrios Gunopulos
    • 2
  • Vassilis J. Tsotras
    • 2
  1. 1.Department of Computer ScienceBoston UniversityBostonUSA
  2. 2.Department of Computer Science & EngineeringUniversity of California RiversideRiversideUSA

Personalised recommendations