The VLDB Journal

, Volume 13, Issue 4, pp 384–403 | Cite as

Balancing energy efficiency and quality of aggregate data in sensor networks

  • Mohamed A. Sharaf
  • Jonathan Beaver
  • Alexandros Labrinidis
  • Panos K. Chrysanthis
Article

Abstract.

In-network aggregation has been proposed as one method for reducing energy consumption in sensor networks. In this paper, we explore two ideas related to further reducing energy consumption in the context of in-network aggregation. The first is by influencing the construction of the routing trees for sensor networks with the goal of reducing the size of transmitted data. To this end, we propose a group-aware network configuration method that “clusters” along the same path sensor nodes that belong to the same group. The second idea involves imposing a hierarchy of output filters on the sensor network with the goal of both reducing the size of transmitted data and minimizing the number of transmitted messages. More specifically, we propose a framework to use temporal coherency tolerances in conjunction with in-network aggregation to save energy at the sensor nodes while maintaining specified quality of data. These tolerances are based on user preferences or can be dictated by the network in cases where the network cannot support the current tolerance level. Our framework, called TiNA, works on top of existing in-network aggregation schemes. We evaluate experimentally our proposed schemes in the context of existing in-network aggregation schemes. We present experimental results measuring energy consumption, response time, and quality of data for Group-By queries. Overall, our schemes provide significant energy savings with respect to communication and a negligible drop in quality of data.

Keywords:

Sensor networks In-network query processing Semantic routing Power-aware computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acharya S, Gibbons PB, Poosala V (2000) Congressional samples for approximate answering of group-by queries. In: Proceedings of ACM SIGMOD Conf.Google Scholar
  2. 2.
    Beaver J, Sharaf MA, Labrinidis A, Chrysanthis PK (2003) Location-aware routing for data aggregation for sensor networks. In: Proceedings of Geo Sensor Networks WorkshopGoogle Scholar
  3. 3.
    Bonnet P, Gehrke J, Seshadri P (2001) Towards sensor database systems. In: Proceedings of MDM Conf.Google Scholar
  4. 4.
    Considine J, Li F, Kollios G, Byers J (2004) Approximate aggregation techniques for sensor databases. In: Proceedings of IEEE ICDE Conf.Google Scholar
  5. 5.
    Deolasse P, Katkar A, Panchbudhe A, Ramamritham K, Shenoy P (2001) Adaptive push-pull: disseminating dynamic web data. In: Proceedings of WWW Conf.Google Scholar
  6. 6.
    Estrin D, Culler D, Pister K, Sukhatme G (2002) Connecting the physical world with pervasive networks. IEEE Pervasive Computing 1(1):59-69CrossRefGoogle Scholar
  7. 7.
    Ganesan D, Greenstein B, Perelyubskiy D, Estrin D, Heidemann J (2003) An evaluation of multi-resolution search and storage in resource-constrained sensor networks. In: Proceedings of ACM SenSys Conf.Google Scholar
  8. 8.
    Goel S, Imielinski T (2001) Prediction-based monitoring in sensor networks: taking lessons from MPEG. Computer Communication Review 31(5)Google Scholar
  9. 9.
    Heidemann J, Silva F, Intanagonwiwat C, Govindan R, Estrin D, Ganesan D (2001) Building efficient wireless sensor networks with low-level naming. In: Proceedings of ACM SOSPGoogle Scholar
  10. 10.
    Heinzelman WR, Chandrakasan A, Balakrishnan H (2000) Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of HICSSGoogle Scholar
  11. 11.
    Hellerstein J, Haas P, Wang H (1997) Online aggregation. In: Proceedings of ACM SIGMOD Conf.Google Scholar
  12. 12.
    Hellerstein J, Hong W, Madden S, Stanek K (2003) Beyond average: toward sophisticated sensing with queries. In: Proceedings of IPSN WorkshopGoogle Scholar
  13. 13.
    Hill J, Culler D (2002) Mica: a wireless platform for deeply embedded networks, IEEE Micro 22(6):12-24Google Scholar
  14. 14.
    Hill J, Szewczyk R, Woo A, Hollar S, Culler D, Pister K (2000) System architecture directions for networked sensors. In: Proceedings of ACM ASPLOS Conf.Google Scholar
  15. 15.
    Intanagonwiwat C, Estrin D, Govindan R, Heidemann J (2002) Inpact of network density on data aggregation in wireless sensor networks. In: Proceedings of IEEE ICDCS Conf.Google Scholar
  16. 16.
    Intanagonwiwat C, Govindan R, Estrin D (2000) Directed diffusion: a scalable and robust communication paradigm for sensor networks. In: Proceedings of ACM MobiCom Conf.Google Scholar
  17. 17.
    Juang P, Oki H, Wang Y, Martonosi M, Peh L-S, Rubenstein D (2002) Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with zebranet. In: Proceedings of ACM ASPLOS Conf.Google Scholar
  18. 18.
    Lazaridis I, Mehrotra S (2003) Capturing sensor-generated time series with quality guarantees. In: Proceedings of IEEE ICDE Conf.Google Scholar
  19. 19.
    Lin C, Federspiel C, Auslander D (2002) Multi-sensor single actuator control of hvac. http://www.cbe.berkeley.edu/ RESEARCH/xyz/FederspielICEBO2002.pdfGoogle Scholar
  20. 20.
    Liu J, Zhao F, Petrovic D (2003) Information-directed routing in ad hoc sensor networks. In: Proceedings of ACM WSNA WorkshopGoogle Scholar
  21. 21.
    Madden S, Franklin M, Hellerstein J, Hong W (2002) TAG: a tiny aggregation service for ad-hoc sensor networks. In: Proceedings of OSDIGoogle Scholar
  22. 22.
    Madden S, Franklin M, Hellerstein J, Hong W (2003) The design of an acquisitional query processor for sensor networks. In: Proceedings of ACM SIGMOD Conf.Google Scholar
  23. 23.
    Mainwaring A, Polastre J, Szewczyk R, Culler D, Anderson J (2002) Wireless sensor networks for habitat monitoring. In: Proceedings of ACM WSNA WorkshopGoogle Scholar
  24. 24.
    Manjeshwar A, Agrawal DP (2002) APTEEN: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks. In: Proceedings of IPDPSGoogle Scholar
  25. 25.
    McPhaden MJ (1994) Tropical atmoshphere ocean project, pacific marine environmental laboratory.http://www.pmel.noaa.gov/tao/Google Scholar
  26. 26.
    Olston C, Jiang J, Widom J (2003) Adaptive filters for continuous queries over distributed data streams. In: Proceedings of ACM SIGMOD Conf.Google Scholar
  27. 27.
    Perkins C, Royer EM (1999) Ad hoc on-demand distance vector routing. In: Proceedings of IEEE WMCSA WorkshopGoogle Scholar
  28. 28.
    Ratnasamy S, Estrin D, Govindan R, Karp B, Shenker S, Yin L, Yu F (2001) Data-centric storage in sensornets. In: Proceedings of HotNets WorkshopGoogle Scholar
  29. 29.
    Schwetman H (2001) CSIM user’s guide, MCC Corp, Austin, TXGoogle Scholar
  30. 30.
    Shah S, Dharmarajan S, Ramamritham K (2003) An efficient and resilient approach to filtering and disseminating streaming data. In: Proceedings of VLDB Conf.Google Scholar
  31. 31.
    Sharaf MA, Beaver J, Labrinidis A, Chrysanthis PK (2003) Tina: A scheme for temporal coherency-aware in-network aggregation. In: Proceedings of ACM MobiDE WorkshopGoogle Scholar
  32. 32.
    Terry DB, Goldberg D, Nichols D, Oki BM (1992) Continuous queries over append-only databases. In: Proceedings of ACM SIGMOD Conf.Google Scholar
  33. 33.
    Woo A, Culler D (2001) A transmission control scheme for media access in sensor networks. In: Proceedings of ACM MobiCom Conf.Google Scholar
  34. 34.
    Woo A, Tong T, Culler D (2003) Taming the underlying challenges of reliable multihop routing in sensor networks. In: Proceedings of ACM SenSys Conf.Google Scholar
  35. 35.
    Yao Y, Gehrke J (2003) Query processing for sensor net. In: Proceedings of CIDR Conf.Google Scholar
  36. 36.
    Younis M, Youssef M, Arisha K (2002) Energy-aware routing in cluster-based sensor networks. In: Proceedings of MASCOTSGoogle Scholar
  37. 37.
    Zhao F, Shin J, Reich J (2002) Information-driven dynamic sensor collaboration for tracking applications. IEEE Signal Process Mag 19(2):61-72CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • Mohamed A. Sharaf
    • 1
  • Jonathan Beaver
    • 1
  • Alexandros Labrinidis
    • 1
  • Panos K. Chrysanthis
    • 1
  1. 1.Department of Computer ScienceUniversity of PittsburghPittburghUSA

Personalised recommendations