The VLDB Journal

, Volume 12, Issue 3, pp 262–283

Incremental computation and maintenance of temporal aggregates

OriginalPaper

Abstract.

We consider the problems of computing aggregation queries in temporal databases and of maintaining materialized temporal aggregate views efficiently. The latter problem is particularly challenging since a single data update can cause aggregate results to change over the entire time line. We introduce a new index structure called the SB-tree, which incorporates features from both segment-trees and B-trees. SB-trees support fast lookup of aggregate results based on time and can be maintained efficiently when the data change. We extend the basic SB-tree index to handle cumulative (also called moving-window) aggregates, considering separatelycases when the window size is or is not fixed in advance. For materialized aggregate views in a temporal database or warehouse, we propose building and maintaining SB-tree indices instead of the views themselves.

Keywords:

Temporal database Aggregation View maintenance Access methods B-tree Segment tree 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bayer R, McCreight EM (1972) Organization and maintenance of large ordered indices. Acta Informat 1:173-189MATHGoogle Scholar
  2. 2.
    Becker B, Gschwind S, Ohler T, Seeger B, Widmayer P (1996) An asymptotically optimal multiversion B-tree. VLDB J 5(4):264-275CrossRefGoogle Scholar
  3. 3.
    Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms. MIT Press, Cambridge, MAGoogle Scholar
  4. 4.
    Epstein R (1979) Techniques for processing of aggregates in relational database systems. Technical Report UCB/ERL M7918, University of California, Berkeley, CAGoogle Scholar
  5. 5.
    Geffner S, Agrawal D, El Abbadi A (2000) The dynamic data cube. In: Proceedings of the 2000 international conference on extending database technology, Konstanz, Germany, March 2000, pp 237-253Google Scholar
  6. 6.
    Gendrano JAG, Huang BC, Rodrigue JM, Moon B, Snodgrass RT (1999) Parallel algorithms for computing temporal aggregates. In: Proceedings of the 1999 international conference on data engineering, Sydney, Australia, March 1999, pp 418-427Google Scholar
  7. 7.
    Gray J, Reuter A (1993) Transaction processing: concepts and techniques. Morgan Kaufmann, San Mateo, CAMathSciNetGoogle Scholar
  8. 8.
    Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD international conference on management of data, Boston, June 1984, pp 47-57Google Scholar
  9. 9.
    Hadjieleftheriou M (2001) Java SB-tree library. =http://www.cs.ucr.edu/ marioh/sbtree/=.Google Scholar
  10. 10.
    Ho CT, Agrawal R, Megiddo N, Srikant R (1997) Range queries in OLAP data cubes. In: Proceedings of the 1997 ACM SIGMOD international conference on management of data, Tucson, AZ, June 1997, pp 73-88Google Scholar
  11. 11.
    Jagadish HV, Narayan PPS, Seshadri S, Sudarshan S, Kanneganti R (1997) Incremental organization for data recording and warehousing. In: Proceedings of the 1997 international conference on very large data bases, Athens, Greece, August 1997, pp 16-25Google Scholar
  12. 12.
    Kline N, Snodgrass RT (1995) Computing temporal aggregates. In: Proceedings of the 1995 international conference on data engineering, Taipei, Taiwan, March 1995, pp 222-231Google Scholar
  13. 13.
    Kolovson CP, Stonebraker M (1991) Segment indexes: dynamic indexing techniques for multi-dimensional interval data. In: Proceedings of the 1991 ACM SIGMOD international conference on management of data, Denver, CO, May 1991, pp 138-147Google Scholar
  14. 14.
    Kriegel HP, Pötke M, Seidl T (2000) Managing intervals efficiently in object-relational databases. In: Proceedings of the 2000 international conference on very large data bases, Cairo, Egypt, September 2000, pp 407-418Google Scholar
  15. 15.
    Moon B, Lopez IFV, Immanuel V (2000) Scalable algorithms for large temporal aggregation. In: Proceedings of the 2000 international conference on data engineering, San Diego, March 2000, pp 145-154Google Scholar
  16. 16.
    Preparata FP, Shamos MI (1985) Computational geometry: an introduction. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. 17.
    Salzberg B, Tsotras VJ (1999) Comparison of access methods for time-evolving data. ACM Comput Surv 21(2):158-221CrossRefGoogle Scholar
  18. 18.
    Snodgrass RT (ed) (1995) The TSQL2 temporal query language. Kluwer, BostonGoogle Scholar
  19. 19.
    Snodgrass RT, Gomez S, McKenzie LE (1993) Aggregates in the temporal query language TQuel. IEEE Trans Knowl Data Eng 5(5):826-842CrossRefGoogle Scholar
  20. 20.
    Tuma PA (1992) Implementing historical aggregates in TempIS. Master's thesis, Wayne State University, Detroit, MIGoogle Scholar
  21. 21.
    Yang J, Widom J (1998) Maintaining temporal views over non-temporal information sources for data warehousing. In: Proceedings of the 1998 international conference on extending database technology, Valencia, Spain, March 1998, pp 389-403Google Scholar
  22. 22.
    Yang J, Widom J (2000) Temporal view self-maintenance in a warehousing environment. In: Proceedings of the 2000 international conference on extending database technology, Konstanz, Germany, March 2000, pp 395-412Google Scholar
  23. 23.
    Yang J, Widom J (2001) Incremental computation and maintenance of temporal aggregates. In: Proceedings of the 2001 international conference on data engineering, Heidelberg, Germany, April 2001Google Scholar
  24. 24.
    Ye X, Keane JA (1997) Processing temporal aggregates in parallel. In: Proceedings of the 1997 IEEE international conference on systems, man, and cybernetics, Orlando, October 1997, pp 1373-1378Google Scholar
  25. 25.
    Zhang D, Markowetz A, Tsotras V, Gunopulos D, Seeger B (2001) Efficient computation of temporal aggregates with range predicates. In: Proceedings of the 2001 ACM symposium on principles of database systems, Santa Barbara, May 2001Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Computer Science DepartmentDuke UniversityUSA
  2. 2.Computer Science DepartmentStanford UniversityUSA

Personalised recommendations