Advertisement

The VLDB Journal

, Volume 12, Issue 2, pp 120–139 | Cite as

Aurora: a new model and architecture for data stream management

  • Daniel J. Abadi
  • Don Carney
  • Ugur Çetintemel
  • Mitch Cherniack
  • Christian Convey
  • Sangdon Lee
  • Michael Stonebraker
  • Nesime Tatbul
  • Stan Zdonik
Original Paper

Abstract.

This paper describes the basic processing model and architecture of Aurora, a new system to manage data streams for monitoring applications. Monitoring applications differ substantially from conventional business data processing. The fact that a software system must process and react to continual inputs from many sources (e.g., sensors) rather than from human operators requires one to rethink the fundamental architecture of a DBMS for this application area. In this paper, we present Aurora, a new DBMS currently under construction at Brandeis University, Brown University, and M.I.T. We first provide an overview of the basic Aurora model and architecture and then describe in detail a stream-oriented set of operators.

Keywords:

Data stream management Continuous queries Database triggers Real-time systems Quality-of-service 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Informix White Paper. (2003) Time series: the next step for telecommunications data management. http://www-3.ibm.com/software/data/informix/pubs/whitepapers/nextstep_wp.pdfGoogle Scholar
  2. 2. Lojack.com (2003) http://www.lojack.com/Google Scholar
  3. 3. Mitre Corporation (2003) http://www.mitre.org/Google Scholar
  4. 4. Altinel M, Franklin MJ (2000) Efficient filtering of XML documents for selective dissemination of information. In: Proceedings of the 26th international conference on very large data bases (VLDB), Cairo, 10--14 September 2000, pp 53--64Google Scholar
  5. 5. Avnur R, Hellerstein J (2000) Eddies: continuously adaptive query processing. In: Proceedings of the 2000 ACM SIGMOD international conference on management of data, Dallas, pp 261--272Google Scholar
  6. 6. Babcock B, Babu S, Datar M, Motwani R (2003) Chain: operator scheduling for memory minimization in stream systems. In: Proceedings of the international SIGMOD conference, San Diego, 9--12 June 2003 (in press)Google Scholar
  7. 7. Babu S, Widom J (2001) Continuous queries over data streams. SIGMOD Record 30(3):109--120Google Scholar
  8. 8. Barbara D, DuMouchel W, Faloutsos C, Haas PJ, Hellerstein JM, Ioannidis YE, Jagadish HV, Johnson T, Ng RT, Poosala V, Ross KA, Sevcik KC (1997) The New Jersey data reduction report. IEEE Data Eng Bull 20(4):3--45Google Scholar
  9. 9. Chen J, DeWitt DJ, Tian F, Wang Y (2000) NiagaraCQ: a scalable continuous query system for internet databases. In: Proceedings of the 2000 ACM SIGMOD international conference on management of data, Dallas, 14--19 May 2000, pp 379--390Google Scholar
  10. 10. Garcia-Molina H, Salem K (1992) Main memory database systems: an overview. IEEE Trans Knowledge Data Eng 4(6):509--516Google Scholar
  11. 11. Gehrke J, Korn F, Srivastava D (2001) On computing correlated Aggregates over continual data streams. In: Proceedings of the 2001 ACM SIGMOD international conference on management of data, Santa Barbara, CA, 21--24 May 2001, pp 13--24Google Scholar
  12. 12. Gupta A, Mumick IS (1995) Maintenance of materialized views: problems, techniques, and applications. IEEE Data Eng Bull 18(2):3--18Google Scholar
  13. 13. Hanson EN, Carnes C, Huang L, Konyala M, Noronha L, Parthasarathy S, Park JB, Vernon A (1999) Scalable trigger processing. In: Proceedings of the 15th international conference on data engineering, Sydney, 23--26 March 1999, pp 266--275Google Scholar
  14. 14. Hellerstein JM, Haas PJ, Wang HJ (1997) Online aggregation. In: Proceedings of the 1997 ACM SIGMOD international conference on management of data, Tucson, 13--15 May 1997, pp 171--182Google Scholar
  15. 15. Ives ZG, Florescu D, Friedman M, Levy A, Weld DS (1999) An adaptive query execution system for data integration. In: Proceedings of the 1999 ACM SIGMOD international conference on management of data, Philadelphia, 1--3 June 1999, pp 299--310Google Scholar
  16. 16. Kao B, Garcia-Molina H (1994) An overview of realtime database systems. In: Stoyenko AD (ed) Real time computing. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. 17. Madden S, Franklin MJ (2002) Fjording the stream: an architecture for queries over streaming sensor data. In: Proceedings of the 18th international conference on data engineering, San Jose, 26 February--1 March 2002Google Scholar
  18. 18. Madden SR, Shaw MA, Hellerstein JM, Raman V (2002) Continuously adaptive continuous queries over streams. In: Proceedings of the ACM SIGMOD international conference on management of data, Madison, WI, 3--6 June 2002, pp 49--60Google Scholar
  19. 19. Mohan C, Agrawal D, Alonso G, Abbadi AE, Gunther R, Kamath M (1995) Exotica: a project on advanced transaction management and workflow systems. SIGOIS Bull 16(1):45--50Google Scholar
  20. 20. Motwani R, Widom J, Arasu A, Babcock B, Babu S, Datar M, Manku G, Olston C, Rosenstein J, Varma R (2002) Query processing, approximation, and resource management in a data stream management system. Stanford University, Computer Science Department 2002-41, August 2002Google Scholar
  21. 21. Nieh J, Lam MS (1997) The design, implementation and evaluation of SMART: a scheduler for multimedia applications. In: Proceedings of the 16th ACM symposium on operating systems principles, Saint-Malo, France, 5--8 October 1997, pp 184--197Google Scholar
  22. 22. Ozsoyoglu G, Snodgrass RT (1995) Temporal and real-time databases: a survey. IEEE Trans Knowledge Data Eng 7(4):513--532Google Scholar
  23. 23. Paton N, Diaz O (1999) Active database systems. ACM Comput Surv 31(1):63--103Google Scholar
  24. 24. Schreier U, Pirahesh H, Agrawal R, Mohan C (1991) Alert: an architecture for transforming a passive DBMS into an active DBMS. In: Proceedings of the 17th international conference on very large data bases, Barcelona, 3--6 September 1991, pp 469--478Google Scholar
  25. 25. Sellis TK, Ghosh S (1990) On the multiple-query optimization problem. IEEE Trans Knowledge Data Eng 2(2):262--266Google Scholar
  26. 26. Seshadri P, Livny M, Ramakrishnan R (1995) SEQ: a model for sequence databases. In: Proceedings of the 11th international conference on data engineering, Taipei, Taiwan, 6--10 March 1995, pp 232--239Google Scholar
  27. 27. Sullivan M, Heybey A (1998) Tribeca: a system for managing large databases of network traffic. In: Proceedings of the USENIX annual technical conference, New Orleans, 15--19 June 1998, pp 13--24Google Scholar
  28. 28. Urhan T, Franklin MJ (2001) Dynamic pipeline scheduling for improving interactive query performance. In: Proceedings of the 27th international conference on very large data bases, Rome, 11--14 September 2001, pp 501--510Google Scholar
  29. 29. Viglas S, Naughton JF (2002) Rate-based query optimization for streaming information sources. In: Proceedings of the ACM SIGMOD international conference on management of data, Madison, WI, 3--6 June 2002, pp 37--48Google Scholar
  30. 30. Yang C, Reddy AVS (1995) A taxonomy for congestion control algorithms in packet switching networks. IEEE Netw 9(5):34--44Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • Daniel J. Abadi
    • 1
  • Don Carney
    • 2
  • Ugur Çetintemel
    • 2
  • Mitch Cherniack
    • 1
  • Christian Convey
    • 2
  • Sangdon Lee
    • 2
  • Michael Stonebraker
    • 3
  • Nesime Tatbul
    • 2
  • Stan Zdonik
    • 2
  1. 1.Department of Computer ScienceBrandeis UniversityWalthamUSA
  2. 2.Department of Computer ScienceBrown UniversityProvidenceUSA
  3. 3.Department of EECS and Laboratory of Computer ScienceM.I.T.CambridgeUSA

Personalised recommendations