Journal of Orthopaedic Science

, Volume 18, Issue 2, pp 256–263

The effect of complete radial lateral meniscus posterior root tear on the knee contact mechanics: a finite element analysis

Original Article

Abstract

Background

In recent years, with technological advances in arthroscopy and magnetic resonance imaging and improved biomechanical studies of the meniscus, there has been some progress in the diagnosis and treatment of injuries to the roots of the meniscus. However, the biomechanical effect of posterior lateral meniscus root tears on the knee has not yet become clear. The purpose of this study was to determine the effect of a complete radial posterior lateral meniscus root tear on the knee contact mechanics and the function of the posterior meniscofemoral ligament on the knee with tear in the posterior root of lateral meniscus.

Methods

A finite element model of the knee was developed to simulate different cases for intact knee, a complete radial posterior lateral meniscus root tear, a complete radial posterior lateral meniscus root tear with posterior meniscofemoral ligament deficiency, and total meniscectomy of the lateral meniscus. A compressive load of 1000 N was applied in all cases to calculate contact areas, contact pressure, and meniscal displacements.

Results

The complete radial posterior lateral meniscus root tear decreased the contact area and increased the contact pressure on the lateral compartment under compressive load. We also found a decreased contact area and increased contact pressure in the medial compartment, but it was not obvious compared to the lateral compartment. The lateral meniscus was radially displaced by compressive load after a complete radial posterior lateral meniscus root tear, and the displacement took place mainly in the body and posterior horn of lateral meniscus. There were further decrease in contact area and increases in contact pressure and raidial displacement of the lateral meniscus in the case of the complete posterior lateral meniscus root tear in combination with posterior meniscofemoral ligament deficiency.

Conclusions

Complete radial posterior lateral meniscus root tear is not functionally equivalent to total meniscectomy. The posterior root torn lateral meniscus continues to provide some load transmission and distribution functions across the joint. The posterior meniscofemoral ligament prevents excessive radial displacement of the posterior root torn lateral meniscus and assists the torn lateral meniscus in transmitting a certain amount of stress in the lateral compartment.

References

  1. 1.
    Jones C, Reddy S, Ma CB. Repair of the posterior root of the medial meniscus. Knee. 2010;17:77–80.PubMedCrossRefGoogle Scholar
  2. 2.
    Ahn JH, Lee YS, Yoo JC, Chang MJ, Park SJ, Pae YR. Results of arthroscopic all-inside repair for lateral meniscus root tear in patients undergoing concomitant anterior cruciate ligament reconstruction. Arthroscopy. 2010;26:67–75.PubMedCrossRefGoogle Scholar
  3. 3.
    Costa CR, Morrison WB, Carrino JA. Medial meniscus extrusion on knee MRI: is extent associated with severity of degeneration or type of tear. Am J Roentgenol. 2004;183:17–23.CrossRefGoogle Scholar
  4. 4.
    Lerer DB, Umans HR, Hu MX, Jones MH. The role of meniscal root pathology and radial meniscal tear in medial meniscal extrusion. Skeletal Radiol. 2004;33:569–74.PubMedCrossRefGoogle Scholar
  5. 5.
    Allaire R, Muriuki M, Gilbertson L, Harner CD. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J Bone Jt Surg Am. 2008;90:1922–31.CrossRefGoogle Scholar
  6. 6.
    Lee JH, Lim YJ, Kim KB, Kim KH, Song JH. Arthroscopic pullout suture repair of posterior root tear of the medial meniscus: radiographic and clinical results with a 2-year follow-up. Arthroscopy. 2009;25:951–8.PubMedCrossRefGoogle Scholar
  7. 7.
    De Smet AA, Blankenbaker DG, Kijowski R, Graf BK, Shinki K. MR diagnosis of posterior root tears of the lateral meniscus using arthroscopy as the reference standard. Am J Roentgenol. 2009;192:480–6.CrossRefGoogle Scholar
  8. 8.
    Anderson L, Watts M, Shapter O, et al. Repair of radial tears and posterior horn detachments of the lateral meniscus: minimum 2-year follow-up. Arthroscopy. 2010;26:1625–32.PubMedCrossRefGoogle Scholar
  9. 9.
    Kenny C. Arthroscopic repair of avulsion of the posterior root and body of the lateral meniscus: a twenty-year follow-up. A case report. J Bone Jt Surg Am. 2009;91:2932–6.CrossRefGoogle Scholar
  10. 10.
    Hein C, Deperio J, Ehrensberger M, Marzo J. Effects of medial meniscal posterior horn avulsion and repair on meniscal displacement. Knee. 2010;18:189–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Marzo JM, Gurske-DePerio J. Effects of medial meniscus posterior horn avulsion and repair on tibiofemoral contact area and peak contact pressure with clinical implications. Am J Sports Med. 2009;37:124–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Shepherd DE, Seedhom BB. The ‘instantaneous’ compressive modulus of human articular cartilage in joints ofthe lower limb. Rheumatology (Oxford). 1999;38:124–32.CrossRefGoogle Scholar
  13. 13.
    Haut DTL, Hull ML, Rashid MM, Jacobs CR. How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. J Biomech. 2003;36:19–34.CrossRefGoogle Scholar
  14. 14.
    Dhaher YY, Kwon TH, Barry M. The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions. J Biomech. 2010;43:3118–25.PubMedCrossRefGoogle Scholar
  15. 15.
    Yang NH, Canavan PK, Nayeb-Hashemi H. The effect of the frontal plane tibiofemoral angle and varus knee moment on the contact stress and strain at the knee cartilage. J Appl Biomech. 2010;26:432–43.PubMedGoogle Scholar
  16. 16.
    Hauch KN, Villegas DF, Haut DTL. Geometry, time-dependent and failure properties of human meniscal attachments. J Biomech. 2010;43:463–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Pena E, Calvo B, Martinez MA, Doblare M. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech. 2006;39:1686–701.PubMedCrossRefGoogle Scholar
  18. 18.
    Gupte CM, Smith A, Jamieson N, Bull AM, Thomas RD, Amis AA. Meniscofemoral ligaments–structural and material properties. J Biomech. 2002;35:1623–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Weiss JA, Maker BN, Govindjee S. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng. 1996;135:107–28.CrossRefGoogle Scholar
  20. 20.
    Shirazi R, Shirazi-Adl A, Hurtig M. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J Biomech. 2008;41:3340–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand. 1980;51:871–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Kurosawa H, Fukubayashi T, Nakajima H. Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci. Clin Orthop Relat Res. 1980;149:283–90.PubMedGoogle Scholar
  23. 23.
    Brown TD, Shaw DT. In vitro contact stress distribution on the femoral condyles. J Orthop Res. 1984;2:190–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Walker PS, Erkman MJ. The role of the menisci in force transmission across the knee. Clin Orthop Relat Res. 1975;109:184–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Choi CJ, Choi YJ, Lee JJ, Choi CH. Magnetic resonance imaging evidence of meniscal extrusion in medial meniscus posterior root tear. Arthroscopy. 2010;26:1602–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Brody JM, Lin HM, Hulstyn MJ, Tung GA. Lateral meniscus root tear and meniscus extrusion with anterior cruciate ligament tear. Radiology. 2006;239:805–10.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen MI, Branch TP, Hutton WC. Is it important to secure the horns during lateral meniscal transplantation? A cadaveric study. Arthroscopy. 1996;12:174–81.PubMedCrossRefGoogle Scholar
  28. 28.
    Gupte CM, Bull AM, Thomas RD, Amis AA. A review of the function and biomechanics of the meniscofemoral ligaments. Arthroscopy. 2003;19:161–71.PubMedGoogle Scholar
  29. 29.
    Gupte CM, Bull AM, Thomas RD, Amis AA. The meniscofemoral ligaments: secondary restraints to the posterior drawer. Analysis of anteroposterior and rotary laxity in the intact and posterior-cruciate-deficient knee. J Bone Jt Surg Br. 2003;85:765–73.Google Scholar
  30. 30.
    Amadi HO, Gupte CM, Lie DT, McDermott ID, Amis AA, Bull AM. A biomechanical study of the meniscofemoral ligaments and their contribution to contact pressure reduction in the knee. Knee Surg Sports Traumatol Arthrosc. 2008;16:1004–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Shelbourne KD, Roberson TA, Gray T. Long-term evaluation of posterior lateral meniscus root tears left in situ at the time of anterior cruciate ligament reconstruction. Am J Sports Med. 2011;39:1439–43.PubMedCrossRefGoogle Scholar
  32. 32.
    Eberhardt AW, Keer LM, Lewis JL, Vithoontien V. An analytical model of joint contact. J Biomech Eng. 1990;112:407–13.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Orthopaedic Association 2012

Authors and Affiliations

  1. 1.Department of Joint SurgeryFirst Hospital of Jilin UniversityChangchunChina
  2. 2.Department of Engineering MechanicsJilin UniversityChangchunChina

Personalised recommendations