Structural characteristics of protein binding sites for calcium and lanthanide ions



Surveys of X-ray structures of Ca2+-containing and lanthanide ion-containing proteins and coordination complexes have been performed and structural features of the metal binding sites compared. A total of 515 structures of Ca2+-containing proteins were considered, although the final data set contained only 44 structures and 60Ca 2+ binding sites with a total of 323 ligands. Eighteen protein structures containing lanthanide ions were considered with a final data set containing eight structures and 11 metal binding sites. Structural features analysed include coordination numbers of the metal ions, the identity of their ligands, the denticity of carboxylate ligands, and the type of secondary structure from which the ligands are derived. Three general types of calcium binding site were identified in the final data set: class I sites supply the Ca2+ ligands from a continuous short sequence of amino acids; class II sites have one ligand supplied by a part of the amino acid sequence far removed from the main binding sequence; and class III sites are created by amino acids remote from one another in the sequence. The abundant EF-hand type of Ca2+ binding site was under-represented in the data set of structures analysed as far as its biological distribution is concerned, but was adequately represented for the chemical survey undertaken. A turn or loop structure was found to provide the bulk of the ligands to Ca2+, but helix and sheet secondary structures are slightly better providers of bidentate carboxylate ligation than turn or loop structures. The average coordination number for Ca2+ was 6.0, though for EF-hand sites it is 7. The average coordination number of a lanthanide ion in an intrinsic protein Ca2+ site was 7.2, but for the adventitious sites was only 4.4. A survey of the Cambridge Structural Database showed there are small-molecule lanthanide complexes with low coordination numbers but it is likely that water molecules, which do not appear in the electron density maps, are present for some lanthanide sites in proteins. A detailed comparison of the well-defined Ca2+ and lanthanide ion binding sites suggests that a reduction of hydrogen bonding associated with the ligating residues of the binding sites containing lanthanide ions may be a response to the additional positive charge of the lanthanide ion. Major structural differences between Ca2+ binding sites with weak and strong binding affinities were not obvious, a consequence of long-range electrostatic interactions and metal ion-induced protein conformational changes modulating affinities.


Calcium ions Lanthanide ions Protein structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holm RH, Solomon El (eds) (1996) Chem Rev 96:2237–3042Google Scholar
  2. 2.
    Da Silva JJRF, Williams RJP (1991) The biological chemistry of the elements. Clarendon Press, OxfordGoogle Scholar
  3. 3.
    Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Sausalito, CalifGoogle Scholar
  4. 4.
    Glusker JP (1991) Adv Protein Chem 42:1–76PubMedCrossRefGoogle Scholar
  5. 5.
    Kretsinger RH, Kockolds CE (1973) J Biol Chem 248:3313–3326PubMedGoogle Scholar
  6. 6.
    Einspahr H, Bugg CE (1984) In: Sigel H (ed) Metal ions in biological systems, vol 17. Dekker, Basel, pp 51–71Google Scholar
  7. 7.
    McPhalen CA, Strynadka NCJ, James MNG (1991) Adv Protien Chem 42:77–144CrossRefGoogle Scholar
  8. 8.
    da Silva ACR, Reinach FC (1991) Trends Biochem Sci 16:53–57PubMedCrossRefGoogle Scholar
  9. 9.
    Falke JJ, Drake SK, Hazard AL, Peersen OB (1994) Q Rev Biophys 27:219–290PubMedCrossRefGoogle Scholar
  10. 10.
    Skelton NJ, Kördel J, Akke M, Forsén S, Chazin WJ (1994) Nat Struct Biol 1:239–245PubMedCrossRefGoogle Scholar
  11. 11.
    Ikura M (1996) Trends Biochem Sci 21:14–17PubMedGoogle Scholar
  12. 12.
    Cates MS, Berry MB, Ho EL, Li Q, Potter JD, Phillips GN Jr (1999) Structure 7:1269–1278PubMedCrossRefGoogle Scholar
  13. 13.
    Kuroki R, Taniyama Y, Seko C, Nakamura H, Kikuchi M, Ikehara M (1989) Proc Natl Acad Sci USA 86:6903–6907PubMedCrossRefGoogle Scholar
  14. 14.
    Bonagura CA, Sundaramoorthy M, Pappa HS, Patterson WR, Poulos TL (1996) Biochemistry 35:6107–6115PubMedCrossRefGoogle Scholar
  15. 15.
    Katz AK, Glusker JP, Beebe SA, Bock CW (1996) J Am Chem Soc 118:5752–5763CrossRefGoogle Scholar
  16. 16.
    Rubin GM, Yandell MD, Wortmann JR, Miklos GLG, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W, Cherry JM, Henikoff S, Skupski MP, Misra S, Ashburner M, Birney E, Boguski MS, Brody T, Brokstein P, Celniker SE, Chervitz SA, Coates D, Cravchik A, Gabrielian A, Galle RF, Gelbart WM, George RA, Goldstein LSB, Gong F, Guan P, Harris NL, Hay BA, Hoskins RA, Li J, Li Z, Hynes RO, Jones SJM, Kuehl PM, Lemaitre B, Littleton JT, Morrison DK, Mungall C, O'Farrell PH, Pickeral OK, Shue C, Vosshall LB, Zhang J, Zhao Q, Zheng ZH, Zhong F, Zhong, W, Gibbs R, Venter JC, Adams MD, Lewis S (2000) Science 287:2204–2215PubMedCrossRefGoogle Scholar
  17. 17.
    Clark ID, MacManus JP, Banville D, Szabo AG (1993) Anal Biochem 210:1–6PubMedCrossRefGoogle Scholar
  18. 18.
    MacKenzie CR, Clark ID, Evans SV, Hill IE, MacManus JP, Dubuc G, Bundle DR, Narang SA, Young NM, Szabo AG (1995) Immunotechnology 1:139–150PubMedCrossRefGoogle Scholar
  19. 19.
    Moore JD, Skinner MA, Swatman DR, Hawkins AR, Brown, KA (1998) J Am Chem Soc 120:7105–7106CrossRefGoogle Scholar
  20. 20.
    Matthews BW, Weaver LH (1974) Biochemistry 13:1719–1725PubMedCrossRefGoogle Scholar
  21. 21.
    Weis WI, Kahn R, Fourme R, Drickamer K, Hendrickson WA (1991) Science 254:1608–1615PubMedCrossRefGoogle Scholar
  22. 22.
    Shapiro L, Fannon AM, Kwong PD, Thompson A, Lehmann MS, Grübel G, Legrand J-F, Als-Nielsen J, Colman DR, Hendrickson WA (1995) Nature 374:327–337PubMedCrossRefGoogle Scholar
  23. 23.
    Burling FT, Weis WI, Flaherty KM, Brünger AT (1996) Science 271:72–77PubMedCrossRefGoogle Scholar
  24. 24.
    Grobler JA, Essen L-O, Williams RL, Hurley JH (1996) Nat Struct Biol 3:788–795PubMedCrossRefGoogle Scholar
  25. 25.
    Brodersen DE, Etzerodt M, Madsen P, Celis JE, Thøgersen HC, Nyborg J, Kjeldgaard M (1998) Structure 6:477–489PubMedCrossRefGoogle Scholar
  26. 26.
    Boggon TJ, Shapiro L (2000) Structure 8:R143–R149PubMedCrossRefGoogle Scholar
  27. 27.
    Dobson CM, Williams RJP (1977) In: Pullman H, Goldblum N (eds) Metal-ligand interactions in organic chemistry and biochemistry, vol 1. Reidel, Dordrecht, pp 255–282CrossRefGoogle Scholar
  28. 28.
    Lee L, Sykes BD (1983) Biochemistry 22:4366–4373PubMedCrossRefGoogle Scholar
  29. 29.
    Bentrop D, Bertini I, Cremonini MA, Forsén S, Luchinat C, Malmendal A (1997) Biochemistry 36:11605–11618PubMedCrossRefGoogle Scholar
  30. 30.
    Biekofsky RR, Muskett FW, Schmidt JM, Martin SR, Browne JP, Bayley PM, Feeney J (1999) FEBS Lett 460:519–526PubMedCrossRefGoogle Scholar
  31. 31.
    Allegrozi M, Bertini I, Janik MBL, Lee Y-M, Liu G, Luchinat C (2000) J Am Chem Soc 122:4154–4161CrossRefGoogle Scholar
  32. 32.
    Yuan J, Matsumoto K (1998) Anal Chem 70:596–601PubMedCrossRefGoogle Scholar
  33. 33.
    Horrocks WD Jr (1993) Methods Enzymol 226:495–538PubMedCrossRefGoogle Scholar
  34. 34.
    Sabbatini N, Guardigh M, Lehn J-M (1993) Coord Chem Rev 123:201–228CrossRefGoogle Scholar
  35. 35.
    Hertzberg RP, Pope AJ (2000) Curr Opin Chem Biol 4:445–451PubMedCrossRefGoogle Scholar
  36. 36.
    Banner DW, D'Arcy A, Chène C, Winkler FK, Guha A, Konigsberg WH, Nemerson Y, Kirchhofer D (1996) Nature 380:41–46PubMedCrossRefGoogle Scholar
  37. 37.
    Sunnerhagen MS, Persson E, Dahlqvist I, Drakenberg T, Stenflo J, Mayhew M, Robin M, Handford P, Tilley JW, Campbell ID, Brownlee GG (1993) J Biol Chem 268:23339–23344PubMedGoogle Scholar
  38. 38.
    Allen FH, Kennard O (1993) Chem Des Automation News 8:31–37Google Scholar
  39. 39.
    Bernstein FC, Koetzle TF, Williams GJB, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) J Mol Biol 112:535–542PubMedCrossRefGoogle Scholar
  40. 40.
    Sayle R, Milner-White EJ (1995) Trends Biochem Sci 20:374–376PubMedCrossRefGoogle Scholar
  41. 41.
    Koradi R, Billeter M, Wüthrich K (1996) J Mol Graphics 14:51–59CrossRefGoogle Scholar
  42. 42.
    Handford PA, Mayhew M, Baron M, Winship PR, Campbell ID, Brownlee GG (1991) Nature 351:164–167PubMedCrossRefGoogle Scholar
  43. 43.
    Hofmann K, Bucher P, Falquet L, Bairoch A (1999) Nucleic Acids Res 27:215–219PubMedCrossRefGoogle Scholar
  44. 44.
    Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, Thornton JM (1997) Trends Biochem Sci 22:488–490PubMedCrossRefGoogle Scholar
  45. 45.
    Creighton TE (1993) Proteins. Freeman, New York, pp 255–257Google Scholar
  46. 46.
    Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry, 4th edn. HarperCollins, New York, pp 599–613Google Scholar
  47. 47.
    Williams RJP (1982) Struct Bonding 50:79–119CrossRefGoogle Scholar
  48. 48.
    Gomis-Ruth F-X, Kress LF, Bode W (1993) EMBO J 12:4151–4157PubMedGoogle Scholar
  49. 49.
    Elgavish S, Shaanan B (1988) J Mol Biol 277:917–932CrossRefGoogle Scholar
  50. 50.
    Parsons MR, Convery MA, Wilmot CM, Yadav KDS, Blakely V, Corner AS, Phillips SEV, McPherson MJ, Knowles PF (1995) Structure 3:1171–1184PubMedCrossRefGoogle Scholar
  51. 51.
    Carr S, Penfold CN, Bamford V, James R, Hemmings AM (2000) Structure 8:57–66PubMedCrossRefGoogle Scholar
  52. 52.
    Carr S (2000) PhD thesis, University of East Anglia, Norwich, UKGoogle Scholar
  53. 53.
    Shulz GE, Schirmer RH (1979) Principles of protein structure. Springer, Berlin Heidelberg New York, p 109CrossRefGoogle Scholar
  54. 54.
    Baker EN, Hubbard RE (1984) Prog Biophys Mol Biol 44:97–179PubMedCrossRefGoogle Scholar
  55. 55.
    Weis WI, Drickamer K, Hendrickson WA (1992) Nature 360:127–134PubMedCrossRefGoogle Scholar
  56. 56.
    Tomchick DR, Turner RJ, Switzer RL, Smith JL (1998) Structure 6:337–350PubMedCrossRefGoogle Scholar
  57. 57.
    Brautigan CA, Aschheim K, Steitz TA (1999) Chem Biol 6:901–908CrossRefGoogle Scholar
  58. 58.
    Geraldes CFGC, Urbano AM, Hoefnagel MA, Peters JA (1993) Inorg Chem 32:2426–2432CrossRefGoogle Scholar
  59. 59.
    Lammers H, Maton F, Pubanz D, van Laren MW, van Bekkum H, Merbach AE, Muller RN, Peters JA (1997) Inorg Chem 36:2527–2538CrossRefGoogle Scholar
  60. 60.
    Satyshov KA, Pyzalska D, Greaser M, Rao ST, Sundaralingam M (1994) Acta Crystallogr Sect D 50:40–49CrossRefGoogle Scholar
  61. 61.
    Rao ST, Satyshov KA, Greaser ML, Sundaralingam M (1996) Acta Crystallogr Sect D 52:916–922CrossRefGoogle Scholar
  62. 62.
    Bruno J, Zauharm RJ, Horrocks WD Jr (1992) Biochemistry 31:7016–7026PubMedCrossRefGoogle Scholar
  63. 63.
    Moore GR, Pettigrew GW, Rogers NK, Williams G (1986) In: Xavier AV (ed) Frontiers in bioinorganic chemistry. VCH, Weinheim, pp 494–506Google Scholar
  64. 64.
    Mauk AG, Moore GR (1997) JBIC 2:119–125CrossRefGoogle Scholar
  65. 65.
    Snyder EE, Buoscio BW, Falke JJ (1990) Biochemistry 29:3937–3943PubMedCrossRefGoogle Scholar
  66. 66.
    Falke JJ, Snyder EE, Thatcher KC, Voertler CS (1991) Biochemistry 30:8690–8697PubMedCrossRefGoogle Scholar
  67. 67.
    Henzl MT, Hapak RC, Goodpasture EA (1996) Biochemistry 35:5856–5869PubMedCrossRefGoogle Scholar
  68. 68.
    Drake SK, Zimmer MA, Kundrot C, Falke JJ (1997) J Gen Physiol 110:173–184PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2001

Authors and Affiliations

  1. 1.School of Chemical SciencesUniversity of East AngliaNorwichUK

Personalised recommendations