Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 24, Issue 8, pp 1261–1268 | Cite as

Biometals as conformational modulators of α-synuclein photochemical crosslinking

  • Dinendra L. Abeyawardhane
  • Alyson M. Curry
  • Ashley K. Forney
  • Joel W. Roberts
  • Heather R. LucasEmail author
Original Paper
Part of the following topical collections:
  1. Metal Ions and Degenerative Diseases

Abstract

Metal dyshomeostasis has long been linked to Parkinson’s disease (PD), and the amyloidogenic protein α-synuclein (αS) is universally recognized as a key player in PD pathology. Structural consequences upon coordination of copper and iron to αS have gained attention due to significant dyshomeostasis of both metals in the PD brain. Protein–metal association can navigate protein folding in distinctive pathways based on the identity of the bio-metal in question. In this work, we employed photo-chemical crosslinking of unmodified proteins (PICUP) to evaluate these potential metal ion-induced structural alterations in the folding dynamics of N-terminally acetylated αS (NAcαS) following metal coordination. Through fluorescence analysis and immunoblotting analyses following photoirradiation, we discovered that coordination of iron obstructs copper-promoted crosslinking. The absence of intra-molecular crosslinking upon iron association further supports its C-terminal coordination site and suggests a potential role for iron in mitigating nearby post-translational modification of tyrosine residues. Decreased fluorescence emission upon synergistic coordination of both copper and iron highlighted that although copper acts as a conformational promotor of NAcαS crosslinking, iron inhibits analogous conformational changes within the protein. The metal coordination preferences of NAcαS suggest that both competitive binding sites as well as dual metal coordination contribute to the changes in folding dynamics, unveiling unique structural orientations for NAcαS that have a direct and measureable influence on photoinitiated dityrosine crosslinks. Moreover, our findings have physiological implications in that iron overload, as is associated with PD-insulted brain tissue, may serve as a conformational block of copper-promoted protein oxidation.

Keywords

α-Synuclein Dityrosine Photochemical crosslinking Iron Copper 

Notes

Acknowledgements

Research reported in this publication was supported by NIH R01 GM134015, the National Center for Advancing Translational Sciences Clinical and Translational Science Award (UL1TR002649), and the Center for Clinical and Translational Research Endowment Fund of Virginia Commonwealth University, as well as by the VCU College of Humanities and Sciences. We would also like to express our appreciation to the United States Secret Service for donation of the Hitachi F-4500 fluorescence spectrophotometer and Hitachi U-3310 UV/Vis spectrophotometer to the Lucas lab.

Supplementary material

775_2019_1738_MOESM1_ESM.pdf (125 kb)
Supplementary material 1 (PDF 124 kb)

References

  1. 1.
    Lashuel H, Overk C, Oueslati A, Masliah E (2013) Nat Rev Neurosci 14:38–48CrossRefGoogle Scholar
  2. 2.
    González N, Arcos-López T, König A, Quintanar L, Menacho Márquez M, Outeiro TF, Fernández CO (2019) J Neurochem 150:507–521CrossRefGoogle Scholar
  3. 3.
    Joppe K, Roser A-E, Maass F, Lingor P (2019) Front Neurosci 13:15CrossRefGoogle Scholar
  4. 4.
    Abeyawardhane DL, Lucas HR (2019) Oxid Med Cell Longev 2019:1–11CrossRefGoogle Scholar
  5. 5.
    Theillet F, Binolfi A, Bekei B, Martorana A, Rose H, Stuiver M, Verzini S, Lorenz D, van Rossum M, Goldfarb D, Selenko P (2016) Nature 530:45CrossRefGoogle Scholar
  6. 6.
    Davies KM, Bohic S, Carmona A, Ortega R, Cottam V, Hare DJ, Finberg JP, Reyes S, Halliday GM, Mercer JF, Double KL (2014) Neurobiol Aging 35:858–866CrossRefGoogle Scholar
  7. 7.
    Moriarty GM, Janowska MK, Kang L, Baum J (2013) FEBS Lett 587:1128–1138CrossRefGoogle Scholar
  8. 8.
    Lucas HR, Fernandez RD (2020) Neural Regener Res 15:407–415CrossRefGoogle Scholar
  9. 9.
    Abeyawardhane DL, Fernández RD, Heitger DR, Crozier MK, Wolver JC, Lucas HR (2018) J Am Chem Soc 140:17086–17094CrossRefGoogle Scholar
  10. 10.
    Abeyawardhane DL, Fernández RD, Murgas CJ, Heitger DR, Forney AK, Crozier MK, Lucas HR (2018) J Am Chem Soc 140:5028–5032CrossRefGoogle Scholar
  11. 11.
    Preston GW, Wilson AJ (2013) Chem Soc Rev 42:3289–3301CrossRefGoogle Scholar
  12. 12.
    Houée-Lévin C, Bobrowski K, Horakova L, Karademir B, Schöneich C, Davies MJ, Spickett CM (2015) Free Radic Res 49:347–373CrossRefGoogle Scholar
  13. 13.
    Fernández RD, Lucas HR (2018) Protein Expr Purif 152:146–154CrossRefGoogle Scholar
  14. 14.
    Dettmer U, Newman AJ, Luth ES, Bartels T, Selkoe D (2013) J Biol Chem 288:6371–6385CrossRefGoogle Scholar
  15. 15.
    Fancy DA, Kodadek T (1999) Proc Natl Acad Sci USA 96:6020–6024CrossRefGoogle Scholar
  16. 16.
    Borsarelli CD, Falomir-Lockhart LJ, Ostatná V, Fauerbach JA, Hsiao H-H, Urlaub H, Paleček E, Jares-Erijman EA, Jovin TM (2012) Free Radic Biol Med 53:1004–1015CrossRefGoogle Scholar
  17. 17.
    Fancy DA, Denison C, Kim K, Xie Y, Holdeman T, Amini F, Kodadek T (2000) Chem Biol 7:697–708CrossRefGoogle Scholar
  18. 18.
    Andreev OA, Reshetnyak YK, Goldfarb RH (2002) Photochem Photobiol Sci 1:834–836CrossRefGoogle Scholar
  19. 19.
    DiMarco T, Giulivi C (2007) Mass Spectrom Rev 26:108–120CrossRefGoogle Scholar
  20. 20.
    Rahimi F, Maiti P, Bitan G (2009) J Vis Exp 23:e1071Google Scholar
  21. 21.
    Bitan G, Lomakin A, Teplow DB (2001) J Biol Chem 276:35176–35184CrossRefGoogle Scholar
  22. 22.
    Lopes DHJ, Sinha S, Rosensweig C, Bitan G (2012) In: Sigurdsson EM, Calero M, Gasset M (eds) Amyloid proteins: methods and protocols. Humana Press, Totowa, pp 11–21CrossRefGoogle Scholar
  23. 23.
    Sullivan BP, Salmon DJ, Meyer TJ (1978) Inorg Chem 17:3334–3341CrossRefGoogle Scholar
  24. 24.
    Johnson M, Coulton AT, Geeves MA, Mulvihill DP (2010) PLoS One 5:e15801CrossRefGoogle Scholar
  25. 25.
    Binolfi A, Rasia RM, Bertoncini CW, Ceolin M, Zweckstetter M, Griesinger C, Jovin TM, Fernández CO (2006) J Am Chem Soc 128:9893–9901CrossRefGoogle Scholar
  26. 26.
    Peng Y, Wang C, Xu H, Liu Y, Zhou F (2010) J Inorg Biochem 104:365–370CrossRefGoogle Scholar
  27. 27.
    Abeyawardhane DL, Heitger DR, Fernández RD, Forney AK, Lucas HR (2019) ACS Chem Neurosci 10:1402–1410CrossRefGoogle Scholar
  28. 28.
    Ramis R, Ortega-Castro J, Vilanova B, Adrover M, Frau J (2017) J Phys Chem A 121:5711–5719CrossRefGoogle Scholar
  29. 29.
    Al-Hilaly YK, Biasetti L, Blakeman BJ, Pollack SJ, Zibaee S, Abdul-Sada A, Thorpe JR, Xue WF, Serpell LC (2016) Sci Rep 6:39171CrossRefGoogle Scholar
  30. 30.
    Atwood CS, Perry G, Zeng H, Kato Y, Jones WD, Ling KQ, Huang X, Moir RD, Wang D, Sayre LM, Smith MA, Chen SG, Bush AI (2004) Biochemistry 43:560–568CrossRefGoogle Scholar
  31. 31.
    McDowall JS, Brown DR (2016) Metallomics 8:385–397CrossRefGoogle Scholar
  32. 32.
    Miotto MC, Valiente-Gabioud AA, Rossetti G, Zweckstetter M, Carloni P, Selenko P, Griesinger C, Binolfi A, Fernández CO (2015) J Am Chem Soc 137:6444–6447CrossRefGoogle Scholar
  33. 33.
    Bharathi SI, Rao K (2007) Neurosci Lett 424:78–82CrossRefGoogle Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  1. 1.Department of ChemistryVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations