JBIC Journal of Biological Inorganic Chemistry

, Volume 24, Issue 8, pp 1245–1259 | Cite as

Active-site environment of Cu bound amyloid β and amylin peptides

  • Ishita Pal
  • Madhuparna Roy
  • Somdatta Ghosh DeyEmail author
Mini Review
Part of the following topical collections:
  1. Metal Ions and Degenerative Diseases


Alzheimer’s disease (AD) and Type 2 Diabetes mellitus (T2Dm), two of the most common amyloidogenic diseases. They share a common pathological symptom, i.e., the formation of amyloid deposits comprised of amyloid β and amylin peptides, respectively. Autopsy of brains of AD-affected patients shows the presence of abnormally high concentrations of Cu in the deposited amyloid β plaques, while a significantly higher level of Cu is found in the serum of patients suffering from T2Dm. These invoke that Cu might play a crucial role in the onset of both AD and T2Dm. In fact, Cu is found to bind amyloid β as well as amylin relevant to AD and T2Dm, respectively. Cu–Aβ and Cu–amylin in their reduced states can generate partially reduced oxygen species (PROS) on reaction with O2 which leads to oxidative stress in the brain and in the pancreas, respectively. However, the pathway of O2 reduction is quite different for the two complexes. Moreover, the use of various spectroscopic techniques such as absorption, EPR, and CD involving native and site-directed mutants of the peptides show that their active-site environments are also dissimilar. Here, we have discussed the different aspects of Cu–Aβ and Cu–amylin complexes including their pH-dependent coordination environments and their reactivity towards O2 which may be responsible for the oxidative stress associated with the two diseases. This depicts the significance of the Cu bound peptide complexes in the context of AD and T2Dm.

Graphic abstract


Electron paramagnetic resonance Ligand binding Metallo-peptide Reactivity Spectroscopy COPPER 



We thank DST, SERB India for financial support (Grants EMR/2014/000392). Ishita Pal thanks UGC and Madhuparna Roy thanks CSIR for research fellowship.

Compliance with ethical standards

Conflicts of interest

There are no conflicts to declare.


  1. 1.
    Khan MF, Falk RH (2001) Amyloidosis. Postgrad Med J 77:686PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Merlini G, Seldin DC, Gertz MA (2011) Amyloidosis: pathogenesis and new therapeutic options. J Clin Oncol 29:1924–1933PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Gueft B, Ghidoni JJ (1963) The site of formation and ultrastructure of amyloid. Am J Pathol 43:837–854PubMedPubMedCentralGoogle Scholar
  4. 4.
    Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R, Bates GP, Lehrach H, Wanker EE (1999) Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Natl Acad Sci U S A 96:4604PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Schwartz P (1976) Amyloidosis as a manifestation and origin of presenile and senile degeneration. Fortschr Med 94:890–896PubMedGoogle Scholar
  6. 6.
    Mena MA, Rodríguez-Navarro JA, de Yébenes JG (2009) The multiple mechanisms of amyloid deposition: the role of parkin. Prion 3:5–11PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Xu W, Caracciolo B, Wang HX, Winblad B, Bäckman L, Qiu C, Fratiglioni L (2010) Accelerated progression from mild cognitive impairment to dementia in people with diabetes. Diabetes 59:2928PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Strachan MWJ, Reynolds RM, Marioni RE, Price JF (2011) Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat Rev Endocrinol 7:108PubMedCrossRefGoogle Scholar
  9. 9.
    de la Monte SM, Wands JR (2008) Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2:1101–1113PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Biessels GJ, Kappelle LJ (2005) Increased risk of Alzheimer’s disease in Type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology? Biochem Soc Trans 33:1041PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Li X, Song D, Leng SX (2015) Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment. Clin Interv Aging 10:549–560PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Wijesekara N, Ahrens R, Sabale M, Wu L, Ha K, Verdile G, Fraser PE (2017) Amyloid-beta and islet amyloid pathologies link Alzheimer’s disease and type 2 diabetes in a transgenic model. FASEB J 31:5409–5418PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Rauk A (2009) The chemistry of Alzheimer’s disease. Chem Soc Rev 38:2698–2715CrossRefGoogle Scholar
  14. 14.
    Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82:4245PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Karran E, Mercken M, Strooper BD (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698CrossRefGoogle Scholar
  16. 16.
    O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Storey N, Cappai N (2002) The amyloid precursor protein of Alzheimer’s disease and the Aβ peptide. Neuropathol Appl Neurobiol 25:81–97CrossRefGoogle Scholar
  18. 18.
    Naslund J, Schierhorn A, Hellman U, Lannfelt L, Roses A, Tjernberg L, Silberring J, Gandy S, Winblad B, Greengard P et al (1994) Relative abundance of Alzheimer A beta amyloid peptide variants in Alzheimer disease and normal aging. Proc Natl Acad Sci U S A 91:8378–8382PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Walsh DM, Selkoe DJ (2007) Aβ oligomers—a decade of discovery. J Neurochem 101:1172–1184PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Verma M, Vats A, Taneja V (2015) Toxic species in amyloid disorders: oligomers or mature fibrils. Ann Indian Acad Neurol 18:138–145PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Sakono M, Zako T (2010) Amyloid oligomers: formation and toxicity of Abeta oligomers. FEBS J 277:1348–1358PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cuello AC (2005) Intracellular and extracellular Aβ, a tale of two neuropathologies. Brain Pathol 15:66–71PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ohyagi Y (2008) Intracellular amyloid beta-protein as a therapeutic target for treating Alzheimer’s disease. Curr Alzheimer Res 5:555–561PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Cornett CR, Markesbery WR, Ehmann WD (1998) Imbalances of trace elements related to oxidative damage in Alzheimer’s disease brain. Neurotoxicology 19:339–345PubMedPubMedCentralGoogle Scholar
  25. 25.
    Bush AI, Masters CL, Tanzi RE (2003) Copper, β-amyloid, and Alzheimer’s disease: tapping a sensitive connection. Proc Natl Acad Sci 100:11193PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    James SA, Churches QI, de Jonge MD, Birchall IE, Streltsov V, McColl G, Adlard PA, Hare DA (2017) Iron, copper, and zinc concentration in abeta plaques in the APP/PS1 mouse model of Alzheimer’s disease correlates with metal levels in the surrounding neuropil. ACS Chem Neurosci 8:629–637PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Maynard CJ, Bush AI, Masters CL, Cappai R, Li Q (2005) Metals and amyloid-beta in Alzheimer’s disease. Int J Exp Pathol 86:147–159PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bush AI, Masters CL, Tanzi RE (2003) Copper, β-amyloid, and Alzheimer’s disease: tapping a sensitive connection. Proc Natl Acad Sci U S A 100:11193–11194PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Gaggelli E, Kozlowski H, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev 106:1995–2040PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Mathys ZK, White AR (2017) Copper and Alzheimer’s disease. Adv Neurobiol 18:199–216PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Squitti R, Lupoi D, Pasqualetti P, Dal Forno G, Vernieri F, Chiovenda P, Rossi L, Cortesi M, Cassetta E, Rossini PM (2002) Elevation of serum copper levels in Alzheimer’s disease. Neurology 59:1153PubMedCrossRefGoogle Scholar
  32. 32.
    Multhaup G, Schlicksupp A, Hesse L, Beher D, Ruppert T, Masters CL, Beyreuther K (1996) The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science 271:1406PubMedCrossRefGoogle Scholar
  33. 33.
    Squitti R, Polimanti R (2013) Copper phenotype in Alzheimer’s disease: dissecting the pathway. Am J Neurodegener Dis 2:46–56PubMedPubMedCentralGoogle Scholar
  34. 34.
    Uriu-Adams JY, Keen CL (2005) Copper, oxidative stress, and human health. Mol Aspects Med 26:268–298PubMedCrossRefGoogle Scholar
  35. 35.
    Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA (2010) Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Med Inflamm 2010 (2010)Google Scholar
  36. 36.
    Association AD (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33:S62CrossRefGoogle Scholar
  37. 37.
    Alberti KGMM, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med 15:539–553PubMedCrossRefGoogle Scholar
  38. 38.
    De Felice FG, Ferreira ST (2014) Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 63:2262PubMedCrossRefGoogle Scholar
  39. 39.
    Zhao WQ, Townsend M (2009) Townsend, Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer’s disease. Biochim et Biophys Acta (BBA) Mol Basis Dis 1792:482–496CrossRefGoogle Scholar
  40. 40.
    Jaikaran ETAS, Clark A (2001) Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology. Biochim et Biophys Acta (BBA) Mol Basis Dis 1537:179–203CrossRefGoogle Scholar
  41. 41.
    Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Bozkurt F, Tekin R, Gulsun S, Satıcı Ö, Deveci O, Hosoglu S (2013) The levels of copper, zinc and magnesium in type II diabetic patients complicated with foot infections. Int J Diabetes Dev Ctries 33:165–169CrossRefGoogle Scholar
  43. 43.
    Ma L, Li X, Wang Y, Zheng W, Chen T (2014) Cu(II) inhibits hIAPP fibrillation and promotes hIAPP-induced beta cell apoptosis through induction of ROS-mediated mitochondrial dysfunction. J Inorg Biochem 140:143–152PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ward B, Walker K, Exley C (2008) Copper(II) inhibits the formation of amylin amyloid in vitro. J Inorg Biochem 102:371–375PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Lee SJC, Choi TS, Lee JW, Lee HJ, Mun DG, Akashi S, Lee SW, Lim MH, Kim HI (2016) Structure and assembly mechanisms of toxic human islet amyloid polypeptide oligomers associated with copper. Chem Sci 7:5398–5406PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sinopoli A, Magrì A, Milardi D, Pappalardo M, Pucci P, Flagiello A, Titman JJ, Nicoletti VG, Caruso G, Pappalardo G, Grasso G (2014) The role of copper(ii) in the aggregation of human amylin. Metallomics 6:1841–1852PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Yu YP, Lei P, Hu J, Wu WH, Zhao YF, Li YM (2010) Copper-induced cytotoxicity: reactive oxygen species or islet amyloid polypeptide oligomer formation. Chem Commun 46:6909–6911CrossRefGoogle Scholar
  48. 48.
    Masad A, Hayes L, Tabner B, Turnbull S, Cooper LJ, Fullwood NJ, German MJ, Kametani F, El-Agnaf OM, Allsop D (2007) Copper-mediated formation of hydrogen peroxide from the amylin peptide: a novel mechanism for degeneration of islet cells in type-2 diabetes mellitus? FEBS Lett 581:3489–3493PubMedCrossRefGoogle Scholar
  49. 49.
    Ghosh C, Dey SG (2013) Ligand-field and ligand-binding analysis of the active site of copper-bound Aβ associated with Alzheimer’s disease. Inorg Chem 52:1318–1327PubMedCrossRefGoogle Scholar
  50. 50.
    Seal M, Dey SG (2018) Active-site environment of copper-bound human amylin relevant to type 2 diabetes. Inorg Chem 57:129–138PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Dorlet P, Faller GSP, Hureau C (2009) Pulse EPR spectroscopy reveals the coordination sphere of copper(II) ions in the 1-16 amyloid-beta peptide: a key role of the first two N-terminus residues. Angew Chem Int Ed Engl 48:9273–9276PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Sánchez-López C, Cortés-Mejía R, Miotto MC, Binolfi A, Fernández CO, del Campo JM, Quintanar L (2016) Copper coordination features of human islet amyloid polypeptide: the type 2 diabetes peptide. Inorg Chem 55:10727–10740PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:797S–811SPubMedPubMedCentralGoogle Scholar
  54. 54.
    Eury H, Bijani C, Faller P, Hureau C (2011) Copper(II) coordination to amyloid β: murine versus human peptide. Angew Chem Int Ed 50:901–905CrossRefGoogle Scholar
  55. 55.
    Karr JW, Akintoye H, Kaupp LJ, Szalai VA (2005) N-Terminal deletions modify the Cu2 + binding site in amyloid-beta. Biochemistry 44:5478–5487PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Minicozzi V, Stellato F, Comai M, Dalla SM, Potrich C, Meyer-Klaucke W, Morante S (2008) Identifying the minimal copper- and zinc-binding site sequence in amyloid-beta peptides. J Biol Chem 283:10784–10792PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Drew SC, Barnham KJ (2011) The heterogeneous nature of Cu2 + interactions with Alzheimer’s amyloid-beta peptide. Acc Chem Res 44:1146–1155PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Faller P, Hureau C (2009) Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-beta peptide. Dalton Trans 21:1080–1094CrossRefGoogle Scholar
  59. 59.
    Borghesani V, Alies B, Hureau C (2018) Cu(II) binding to various forms of amyloid-β peptides. Are they friends or foes? Eur J Inorg Chem 2018:7–15PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Karr JW, Szalai VA (2007) Role of aspartate-1 in Cu(II) binding to the amyloid-beta peptide of Alzheimer’s disease. J Am Chem Soc 129:3796–3797PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Drew SC, Noble CJ, Masters CL, Hanson GL, Barnham KJ (2009) Pleomorphic copper coordination by Alzheimer’s disease amyloid-beta peptide. J Am Chem Soc 131:1195–1207PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Guilloreau L, Damian L, Coppel Y, Mazarguil H, Winterhalter M, Faller P (2006) Structural and thermodynamical properties of CuII amyloid-β16/28 complexes associated with Alzheimer’s disease. J Biol Inorg Chem 11:1024–1038PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Syme CD, Nadal RC, Rigby SEJ, Viles JH (2004) Copper binding to the amyloid-beta (Abeta) peptide associated with Alzheimer’s disease: folding, coordination geometry, pH dependence, stoichiometry, and affinity of Abeta-(1-28): insights from a range of complementary spectroscopic techniques. J Biol Chem 279:18169–18177PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Curtain CC, Ali FF, Smith DG, Bush AI, Masters CL, Barnham KJ (2003) Metal ions, pH, and cholesterol regulate the interactions of Alzheimer’s disease amyloid-beta peptide with membrane lipid. J Biol Chem 278:2977–2982PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Alies B, Eury C, Bijani H, Rechignat L, Faller P, Hureau C (2011) pH-Dependent Cu(II) coordination to amyloid-beta peptide: impact of sequence alterations, including the H6R and D7 N familial mutations. Inorg Chem 50:11192–11201PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Hureau C, Coppel Y, Dorlet P, Solari PL, Sayen S, Guillon E, Sabater L, Faller P (2009) Deprotonation of the Asp1-Ala2 peptide bond induces modification of the dynamic copper(II) environment in the amyloid-beta peptide near physiological pH. Angew Chem Int Ed Engl 48:9522–9525PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ginotra YP, Ramteke SN, Srikanth R, Kulkarni PP (2012) Mass spectral studies reveal the structure of Aβ1–16–Cu2 + complex resembling ATCUN Motif. Inorg Chem 51:7960–7962PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Young TR, Kirchner A, Wedd AG, Xiao Z (2014) An integrated study of the affinities of the Aβ16 peptide for Cu(i) and Cu(ii): implications for the catalytic production of reactive oxygen species. Metallomics 6:505–517PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Kowalik-Jankowska T, Ruta M, Wiśniewska K, Lankiewicz L (2003) Coordination abilities of the 1–16 and 1–28 fragments of beta-amyloid peptide towards copper(II) ions: a combined potentiometric and spectroscopic study. J Inorg Biochem 95:270–282PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Bertini I, Canti G, Luchinat C, Scozzafava A (1978) Spectroscopic investigation of copper(II) bovine carbonic anhydrase and its inhibitor derivatives. J Chem Soc Dalton Trans 5:1269–1273CrossRefGoogle Scholar
  71. 71.
    Young MJ, Wahnon D, Hynes RC, Chin J (1995) Reactivity of copper(II) hydroxides and copper(II) alkoxides for cleaving an activated phosphate diester. J Am Chem Soc 117:9441–9447CrossRefGoogle Scholar
  72. 72.
    Groves JT, Rife R, Chambers R (1984) Geometrical and stereochemical factors in metal-promoted amide hydrolysis. J Am Chem Soc 106:630–638CrossRefGoogle Scholar
  73. 73.
    Kishishita S, Okajima T, Kim M, Yamaguchi H, Hirota S, Suzuki S, Kuroda S, Tanizawa K, Mure M (2003) Role of copper ion in bacterial copper amine oxidase: spectroscopic and crystallographic studies of metal-substituted enzymes. J Am Chem Soc 125 (2003)PubMedCrossRefGoogle Scholar
  74. 74.
    Streltsov VA, Titmuss SJ, Epa VC, Barnham KJ, Masters CL, Varghese JN (2008) The structure of the amyloid-beta peptide high-affinity copper II binding site in Alzheimer disease. Biophys J 95:3447–3456PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Furlan S, Hureau C, Faller P, La Penna G (2012) Modeling copper binding to the amyloid-β peptide at different pH: toward a molecular mechanism for Cu reduction. J Phys Chem B 116:11899–11910PubMedCrossRefGoogle Scholar
  76. 76.
    Pittner RA, Albrandt K, Beaumont K, Gaeta LSL, Koda JE, Moore CX, Rittenhouse J, Rink TJ (1994) Molecular physiology of amylin. J Cell Biochem 55:19–28PubMedCrossRefGoogle Scholar
  77. 77.
    Rowińska-Żyrek M (2016) Coordination of Zn2 + and Cu2 + to the membrane disrupting fragment of amylin. Dalton Trans 45:8099–8106PubMedCrossRefGoogle Scholar
  78. 78.
    Daniele PG, Prenesti E, Ostacoli G (1996) Ultraviolet–circular dichroism spectra for structural analysis of copper(II) complexes with aliphatic and aromatic ligands in aqueous solution. J Chem Soc Dalton Trans 0:3269–3275Google Scholar
  79. 79.
    Rasia RM, Bertoncini CW, Marsh D, Hoyer W, Cherny D, Zweckstetter M, Griesinger C, Jovin TM, Fernandez CO (2005) Structural characterization of copper(II) binding to alpha-synuclein: insights into the bioinorganic chemistry of Parkinson’s disease. Proc Natl Acad Sci U S A 102:4294–4299PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Pramanik D, Ghosh C, Dey SG (2011) Heme–Cu Bound Aβ Peptides: spectroscopic characterization, reactivity, and relevance to Alzheimer’s disease. J Am Chem Soc 133:15545–15552PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    McCauley KM, Vrtis JM, Dupont J, van der Donk WA (2000) Insights into the functional role of the tyrosine–histidine linkage in cytochrome c oxidase. J Am Chem Soc 122:2403–2404CrossRefGoogle Scholar
  82. 82.
    Yu Y, Lv X, Li J, Zhou Q, Cui C, Hosseinzadeh P, Mukherjee A, Nilges MJ, Wang J, Lu Y (2015) Defining the role of tyrosine and rational tuning of oxidase activity by genetic incorporation of unnatural tyrosine analogs. J Am Chem Soc 137:4594–4597PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ishikita H, Knapp EW (2006) Function of redox-active tyrosine in photosystem II. Biophys J 90:3886–3896PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Ghosh C, Pramanik D, Mukherjee S, Dey A, Dey SG (2013) Interaction of NO with Cu and heme-bound Abeta peptides associated with Alzheimer’s disease. Inorg Chem 52:362–368PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  • Ishita Pal
    • 1
  • Madhuparna Roy
    • 1
  • Somdatta Ghosh Dey
    • 1
    Email author
  1. 1.Indian Association for the Cultivation of Science, School of Chemical SciencesKolkataIndia

Personalised recommendations