Advertisement

Proteomic analysis of calcium-enriched sol–gel biomaterials

  • F. Romero-Gavilán
  • Nuno Araújo-GomesEmail author
  • A. Cerqueira
  • I. García-Arnáez
  • C. Martínez-Ramos
  • M. Azkargorta
  • I. Iloro
  • F. Elortza
  • M. Gurruchaga
  • J. Suay
  • I. Goñi
Original Paper

Abstract

Calcium is an element widely used in the development of biomaterials for bone tissue engineering as it plays important roles in bone metabolism and blood coagulation. The Ca ions can condition the microenvironment at the tissue–material interface, affecting the protein deposition process and cell responses. The aim of this study was to analyze the changes in the patterns of protein adsorption on the silica hybrid biomaterials supplemented with different amounts of CaCl2, which can function as release vehicles. This characterization was carried out by incubating the Ca-biomaterials with human serum. LC–MS/MS analysis was used to characterize the adsorbed protein layers and compile a list of proteins whose affinity for the surfaces might depend on the CaCl2 content. The attachment of pro- and anti-clotting proteins, such as THRB, ANT3, and PROC, increased significantly on the Ca-materials. Similarly, VTNC and APOE, proteins directly involved on osteogenic processes, attached preferentially to these surfaces. To assess correlations with the proteomic data, these formulations were tested in vitro regarding their osteogenic and inflammatory potential, employing MC3T3-E1 and RAW 264.7 cell lines, respectively. The results confirmed a Ca dose-dependent osteogenic and inflammatory behavior of the materials employed, in accordance with the protein attachment patterns.

Graphical Abstract

Keywords

Prothrombin Apolipoprotein E Blood clotting Vitronectin Bone regeneration 

Notes

Acknowledgements

This work was supported by MINECO [MAT2017-86043-R]; Universitat Jaume I [Grant numbers Predoc/2014/25, UJI-B2017-37]; Basque Government [Grant numbers IT611-13, Predoc/2016/1/0141]; University of the Basque Country [Grant number UFI11/56]. CIC bioGUNE is supported by Basque Department of Industry, Tourism and Trade (Etortek and Elkartek programs), the Innovation Technology Department of the Bizkaia County; The ProteoRed-ISCIII (Grant PRB3 IPT17/0019); CIBERehd Network, and Severo Ochoa Grant (SEV-2016-0644). Authors would like to thank Antonio Coso and Jaime Franco (GMI-Ilerimplant) for their inestimable contribution to this study, and Raquel Oliver, Jose Ortega (UJI) and Iraide Escobes (CIC bioGUNE) for their valuable technical assistance.

Supplementary material

775_2019_1662_MOESM1_ESM.pdf (64 kb)
Supplementary material 1 (PDF 63 kb)

References

  1. 1.
    Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature 395:645–648.  https://doi.org/10.1038/27094 CrossRefGoogle Scholar
  2. 2.
    Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774.  https://doi.org/10.1016/j.biomaterials.2011.01.004 CrossRefGoogle Scholar
  3. 3.
    Flynn A (2003) The role of dietary calcium in bone health. Proc Nutr Soc 62:851–858.  https://doi.org/10.1079/PNS2003301 CrossRefGoogle Scholar
  4. 4.
    Marie PJ (2010) The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46:571–576.  https://doi.org/10.1016/j.bone.2009.07.082 CrossRefGoogle Scholar
  5. 5.
    Honda Y, Fitzsimmons RJ, Baylink DJ, Mohan S (1995) Effects of extracellular calcium on insulin-like growth factor II in human bone cells. J Bone Miner Res 10:1660–1665.  https://doi.org/10.1002/jbmr.5650101108 CrossRefGoogle Scholar
  6. 6.
    Koori K, Maeda H, Fujii S et al (2014) The roles of calcium-sensing receptor and calcium channel in osteogenic differentiation of undifferentiated periodontal ligament cells. Cell Tissue Res 357:707–718.  https://doi.org/10.1007/s00441-014-1918-5 CrossRefGoogle Scholar
  7. 7.
    Habibovic P, Barralet JE (2011) Bioinorganics and biomaterials: bone repair. Acta Biomater 32:3013–3026.  https://doi.org/10.1016/j.actbio.2011.03.027 CrossRefGoogle Scholar
  8. 8.
    Oshiro Junior J, Paiva Abuçafy M, Berbel Manaia E et al (2016) Drug delivery systems obtained from silica based organic-inorganic hybrids. Polymers (Basel) 8:91.  https://doi.org/10.3390/polym8040091 CrossRefGoogle Scholar
  9. 9.
    Jones JR (2015) Reprint of: review of bioactive glass: from hench to hybrids. Acta Biomater 23:S53–S82.  https://doi.org/10.1016/j.actbio.2015.07.019 CrossRefGoogle Scholar
  10. 10.
    Romero-Gavilán F, Barros-Silva S, García-Cañadas J et al (2016) Control of the degradation of silica sol-gel hybrid coatings for metal implants prepared by the triple combination of alkoxysilanes. J Non Cryst Solids 453:66–73.  https://doi.org/10.1016/j.jnoncrysol.2016.09.026 CrossRefGoogle Scholar
  11. 11.
    Martínez-Ibáñez M, Juan-Díaz MJ, Lara-Saez I et al (2016) Biological characterization of a new silicon based coating developed for dental implants. J Mater Sci Mater Med 27:80.  https://doi.org/10.1007/s10856-016-5690-9 CrossRefGoogle Scholar
  12. 12.
    Martínez-Ibáñez M, Murthy NS, Mao Y et al (2018) Enhancement of plasma protein adsorption and osteogenesis of hMSCs by functionalized siloxane coatings for titanium implants. J Biomed Mater Res Part B Appl Biomater 106:1138–1147.  https://doi.org/10.1002/jbm.b.33889 CrossRefGoogle Scholar
  13. 13.
    Salinas AJ, Merino JM, Babonneau F et al (2007) Microstructure and Macroscopic Properties of Bioactive CaO–SiO2–PDMS Hybrids. J Biomed Mater Res B Appl Biomater 81B:274–282.  https://doi.org/10.1002/jbm.b.30663 CrossRefGoogle Scholar
  14. 14.
    Almeida JC, Wacha A, Gomes PS et al (2016) A biocompatible hybrid material with simultaneous calcium and strontium release capability for bone tissue repair. Mater Sci Eng, C 62:429–438.  https://doi.org/10.1016/j.msec.2016.01.083 CrossRefGoogle Scholar
  15. 15.
    Valliant EM, Romer F, Wang D et al (2013) Bioactivity in silica/poly(c-glutamic acid) sol-gel hybrids through calcium chelation. Acta Biomater 9:7662–7671.  https://doi.org/10.1016/j.actbio.2013.04.037 CrossRefGoogle Scholar
  16. 16.
    Shirosaki Y, Tsuru K, Hayakawa S et al (2005) In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. Biomaterials 26:485–493.  https://doi.org/10.1016/j.biomaterials.2004.02.056 CrossRefGoogle Scholar
  17. 17.
    Romero-Gavilán F, Gomes NC, Ródenas J et al (2017) Proteome analysis of human serum proteins adsorbed onto different titanium surfaces used in dental implants. Biofouling 33:98–111.  https://doi.org/10.1080/08927014.2016.1259414 CrossRefGoogle Scholar
  18. 18.
    Hirsh SL, McKenzie DR, Nosworthy NJ et al (2013) The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surfaces B Biointerfaces 103:395–404.  https://doi.org/10.1016/j.colsurfb.2012.10.039 CrossRefGoogle Scholar
  19. 19.
    Chen Z, Klein T, Murray RZ et al (2015) Osteoimmunomodulation for the development of advanced bone biomaterials. Mater Today 19:304–321.  https://doi.org/10.1016/j.mattod.2015.11.004 CrossRefGoogle Scholar
  20. 20.
    Araújo-Gomes N, Romero-Gavilán F, García-Arnáez I et al (2018) Osseointegration mechanisms: a proteomic approach. J Biol Inorg Chem 23:459–470.  https://doi.org/10.1007/s00775-018-1553-9 CrossRefGoogle Scholar
  21. 21.
    Romero-Gavilán F, Sanchez-Pérez AM, Araújo-Gomes N et al (2017) Proteomic analysis of silica hybrid sol-gel coatings: a potential tool for predicting the biocompatibility of implants in vivo. Biofouling 33:676–689.  https://doi.org/10.1080/08927014.2017.1356289 CrossRefGoogle Scholar
  22. 22.
    Araújo-Gomes N, Romero-Gavilán F, Sanchez-Pérez AM et al (2018) Characterization of serum proteins attached to distinct sol-gel hybrid surfaces. J Biomed Mater Res Part B Appl Biomater 106:1477–1485.  https://doi.org/10.1002/jbm.b.33954 CrossRefGoogle Scholar
  23. 23.
    Romero-Gavilan F, Araújo-Gomes N, Sánchez-Pérez AM et al (2017) Bioactive potential of silica coatings and its effect on the adhesion of proteins to titanium implants. Colloids Surfaces B Biointerfaces 162:316–325.  https://doi.org/10.1016/j.colsurfb.2017.11.072 CrossRefGoogle Scholar
  24. 24.
    Shiu HT, Goss B, Lutton C et al (2014) Formation of blood clot on biomaterial implants influences bone healing. Tissue Eng Part B Rev 20:697–712.  https://doi.org/10.1089/ten.teb.2013.0709 CrossRefGoogle Scholar
  25. 25.
    Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:3–8.  https://doi.org/10.1038/NMETH.1322 CrossRefGoogle Scholar
  26. 26.
    Dvorak MM, Riccardi D (2004) Ca2 + as an extracellular signal in bone. Cell Calcium 35:249–255.  https://doi.org/10.1016/j.ceca.2003.10.014 CrossRefGoogle Scholar
  27. 27.
    Cho NH, Seong SY (2009) Apolipoproteins inhibit the innate immunity activated by necrotic cells or bacterial endotoxin. Immunology 128:479–486.  https://doi.org/10.1111/j.1365-2567.2008.03002.x CrossRefGoogle Scholar
  28. 28.
    Meerasa A, Huang JG, Gu FX (2013) Human serum lipoproteins influence protein deposition patterns on nanoparticle surfaces. ACS Appl Mater Interfaces 5:489–493.  https://doi.org/10.1021/am302554q CrossRefGoogle Scholar
  29. 29.
    Baitsch D, Bock HH, Engel T et al (2011) Apolipoprotein e induces antiinflammatory phenotype in macrophages. Arterioscler Thromb Vasc Biol 31:1160–1168.  https://doi.org/10.1161/ATVBAHA.111.222745 CrossRefGoogle Scholar
  30. 30.
    Niemeier A, Schinke T, Heeren J, Amling M (2012) The role of Apolipoprotein E in bone metabolism. Bone 50:518–524.  https://doi.org/10.1016/j.bone.2011.07.015 CrossRefGoogle Scholar
  31. 31.
    Kim WS, Kim HJ, Lee ZH et al (2013) Apolipoprotein E inhibits osteoclast differentiation via regulation of c-Fos, NFATc1 and NF-κB. Exp Cell Res 319:436–446.  https://doi.org/10.1016/j.yexcr.2012.12.004 CrossRefGoogle Scholar
  32. 32.
    Emsley J, White HE, O’Hara BP et al (1994) Structure of pentameric human serum amyloid P component. Nature 367:338–345CrossRefGoogle Scholar
  33. 33.
    Poulsen ET, Pedersen KW, Marzeda AM, Enghild JJ (2017) Serum amyloid P component (SAP) interactome in human plasma containing physiological calcium levels. Biochemistry 56:896–902.  https://doi.org/10.1021/acs.biochem.6b01027 CrossRefGoogle Scholar
  34. 34.
    Bottazzi B, Inforzato A, Messa M et al (2016) The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodelling. J Hepatol 64:1416–1427.  https://doi.org/10.1016/j.jhep.2016.02.029 CrossRefGoogle Scholar
  35. 35.
    Mollnes TE, Kirschfink M (2006) Strategies of therapeutic complement inhibition. Mol Immunol 43:107–121.  https://doi.org/10.1016/j.molimm.2005.06.014 CrossRefGoogle Scholar
  36. 36.
    Gessmann J, Seybold D, Peter E et al (2013) Plasma clots gelled by different amounts of calcium for stem cell delivery. Langenbeck’s Arch Surg 398:161–167.  https://doi.org/10.1007/s00423-012-1015-8 CrossRefGoogle Scholar
  37. 37.
    Scheraga HA (2004) The thrombin-fibrinogen interaction. Biophys Chem 112:117–130.  https://doi.org/10.1016/j.bpc.2004.07.011 CrossRefGoogle Scholar
  38. 38.
    Chu AJ (2010) Blood coagulation as an intrinsic pathway for proinflammation: a mini review. Inflamm Allergy Drug Targets 9:32–44.  https://doi.org/10.2174/187152810791292890 CrossRefGoogle Scholar
  39. 39.
    Suleiman L, Négrier C, Boukerche H (2013) Protein S: a multifunctional anticoagulant vitamin K-dependent protein at the crossroads of coagulation, inflammation, angiogenesis, and cancer. Crit Rev Oncol Hematol 88:637–654.  https://doi.org/10.1016/j.critrevonc.2013.07.004 CrossRefGoogle Scholar
  40. 40.
    Furie B, Furie BC (2008) Mechanisms of thrombus formation. N Engl J Med 359:938–949.  https://doi.org/10.1056/NEJMra0801082 CrossRefGoogle Scholar
  41. 41.
    Biltoft D, Gram JB, Larsen A et al (2017) Fast form alpha-2-macroglobulin—a marker for protease activation in plasma exposed to artificial surfaces. Clin Biochem 50:1203–1208.  https://doi.org/10.1016/j.clinbiochem.2017.09.002 CrossRefGoogle Scholar
  42. 42.
    Cvirn G, Gallistl S, Koestenberger M et al (2002) Alpha 2-macroglobulin enhances prothrombin activation and thrombin potential by inhibiting the anticoagulant protein C/protein S system in cord and adult plasma. Thromb Res 105:433–439.  https://doi.org/10.1016/S0049-3848(02)00042-7 CrossRefGoogle Scholar
  43. 43.
    Vogler EA, Siedlecki CA (2009) Contact activation of blood-plasma coagulation. Biomaterials 30:1857–1869.  https://doi.org/10.1016/j.biomaterials.2008.12.041 CrossRefGoogle Scholar
  44. 44.
    Leavesley DI, Kashyap AS, Croll T et al (2013) Vitronectin—master controller or micromanager? IUBMB Life 65:807–818.  https://doi.org/10.1002/iub.1203 Google Scholar
  45. 45.
    Kundu AK, Putnam AJ (2006) Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem Biophys Res Commun 347:347–357.  https://doi.org/10.1016/j.bbrc.2006.06.110 CrossRefGoogle Scholar
  46. 46.
    Cacchioli A, Ravanetti F, Bagno A et al (2009) Human vitronectin-derived peptide covalently grafted onto titanium surface improves osteogenic activity: a pilot in vivo study on rabbits. Tissue Eng Part A 15:2017–2026.  https://doi.org/10.1089/ten.tea.2008.0542 CrossRefGoogle Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  • F. Romero-Gavilán
    • 1
  • Nuno Araújo-Gomes
    • 1
    • 2
    Email author
  • A. Cerqueira
    • 2
  • I. García-Arnáez
    • 3
  • C. Martínez-Ramos
    • 2
  • M. Azkargorta
    • 4
  • I. Iloro
    • 4
  • F. Elortza
    • 4
  • M. Gurruchaga
    • 3
  • J. Suay
    • 1
  • I. Goñi
    • 3
  1. 1.Departamento de Ingeniería de Sistemas Industriales y DiseñoUniversitat Jaume ICastellón de la PlanaSpain
  2. 2.Department of MedicineUniversitat Jaume ICastellón de la PlanaSpain
  3. 3.Facultad de Ciencias QuímicasUniversidad del País Vasco.San SebastiánSpain
  4. 4.Proteomics PlatformCIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology ParkDerioSpain

Personalised recommendations