6-Methoxyquinoline complexes as lung carcinoma agents: induction of oxidative damage on A549 monolayer and multicellular spheroid model

  • J. F. Cadavid-Vargas
  • C. Villa-Pérez
  • M. C. Ruiz
  • I. E. León
  • G. C. Valencia-Uribe
  • D. B. Soria
  • S. B. Etcheverry
  • A. L. Di VirgilioEmail author
Original Paper


The aim of this work was to study the antitumor effects and the mechanisms of toxic action of a series of 6-methoxyquinoline (6MQ) complexes in vitro. The Cu(II) and Zn(II) complexes (Cu6MQ and Zn6MQ) are formulated as M(6MQ)2Cl2; the Co(II) and Ag(I) compounds (Co6MQ and Ag6MQ) are ionic with formulae [Ag(6MQ)2]+NO3 and H(6MQ)+[Co(6MQ)Cl3] (where H(6MQ)+ is the protonated ligand). We found that the copper complex, outperformed the Co(II), Zn(II) and Ag(I) complexes with a lower IC50 (57.9 µM) in A549 cells exposed for 24 h. Cu6MQ decreased cell proliferation and induced oxidative stress detected with H2DCFDA at 40 µM, which reduces GSH/GSSG ratio. This redox imbalance induced oxidative DNA damage revealed by the Micronucleus test and the Comet assay, which turned into a cell cycle arrest at G2/M phase and induced apoptosis. In multicellular spheroids, the IC50 values tripled the monolayer model (187.3 µM for 24 h). At this concentration, the proportion of live/dead cells diminished, and the spheroids could not proliferate or invade. Although Zn6MQ also decreased GSH/GSSG ratio from 200 µM and the cytotoxicity is related to oxidative stress, the induction of the hydrogen peroxide levels only doubled the control value. Zn6MQ induced S phase arrest, which relates with the increased micronucleus frequency and with the induction of necrosis. Finally, our results reveal a synergistic activity with a 1:1 ratio of both complexes in the monolayer and multicellular spheroids.


6-Methoxyquinoline complexes Lung carcinoma A549 cells Multicellular spheroid model Oxidative damage 



This work was supported by UNLP (11X/690, PPID 2018/X032), CONICET (PIP 0034) and ANPCyT (PICT 2014-2223 and PICT 2016-0508) from Argentina.

Compliance with ethical standards

Conflict of interest

The authors confirm that they have no conflict of interest with the content of this article.

Ethical approval

This article does not contain studies with human participants or animals performed by any of the authors.

Supplementary material

775_2019_1644_MOESM1_ESM.pdf (515 kb)
Supplementary material 1 (PDF 515 kb)


  1. 1.
    Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:211–218. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Li P, Zhang D, Shen L et al (2016) Redox homeostasis protects mitochondria through accelerating ROS conversion to enhance hypoxia resistance in cancer cells. Sci Rep 6:1–13. CrossRefGoogle Scholar
  3. 3.
    Laurent A, Nicco C, Chéreau C et al (2005) Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65:948–956PubMedGoogle Scholar
  4. 4.
    Lin Y, Zhang H, Liang J et al (2014) Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proc Natl Acad Sci USA. CrossRefPubMedGoogle Scholar
  5. 5.
    Surova O, Zhivotovsky B (2013) Various modes of cell death induced by DNA damage. Oncogene 32:3789–3797. CrossRefPubMedGoogle Scholar
  6. 6.
    Ceccacci E, Minucci S (2016) Inhibition of histone deacetylases in cancer therapy: lessons from leukaemia. Br J Cancer 114:605–611. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Butler LM, Zhou X, Xu W-S et al (2002) The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci 99:11700–11705. CrossRefPubMedGoogle Scholar
  8. 8.
    Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27. CrossRefPubMedGoogle Scholar
  9. 9.
    Eot-Houllier G, Fulcrand G, Magnaghi-Jaulin L, Jaulin C (2009) Histone deacetylase inhibitors and genomic instability. Cancer Lett 274:169–176. CrossRefPubMedGoogle Scholar
  10. 10.
    Martirosyan AR, Rahim-Bata R, Freeman AB et al (2004) Differentiation-inducing quinolines as experimental breast cancer agents in the MCF-7 human breast cancer cell model. Biochem Pharmacol 68:1729–1738. CrossRefPubMedGoogle Scholar
  11. 11.
    Lee H-Y, Nepali K, Huang F-I et al (2018) (N-Hydroxycarbonylbenylamino)quinolines as selective histone deacetylase 6 inhibitors suppress growth of multiple myeloma in vitro and in vivo. J Med Chem 61:905–917. CrossRefPubMedGoogle Scholar
  12. 12.
    Arafa RK, Hegazy GH, Piazza GA, Abadi AH (2013) Synthesis and in vitro antiproliferative effect of novel quinoline-based potential anticancer agents. Eur J Med Chem 63:826–832. CrossRefPubMedGoogle Scholar
  13. 13.
    Nunoshiba T, Demple B (1993) Potent intracellular oxidative stress exerted by the carcinogen 4-nitroquinoline-N-oxide. Cancer Res 53:3250–3252PubMedGoogle Scholar
  14. 14.
    Kwon S, Lee Y, Jung Y et al (2018) Mitochondria-targeting indolizino[3,2-c]quinolines as novel class of photosensitizers for photodynamic anticancer activity. Eur J Med Chem 148:116–127. CrossRefPubMedGoogle Scholar
  15. 15.
    Allan JR, Dahyrnple J (1991) Thermal, spectral and magnetic studies of cobalt(II), copper(II) and zinc(II) complexes of 5,6-benzoquinoline and 6-methoxyquinoline. Thermochim Acta Elsevier Sci Publ BV 191:223–230CrossRefGoogle Scholar
  16. 16.
    Villa-Pérez C, Oyarzabal I, Echeverría GA et al (2016) Single-ion magnets based on mononuclear cobalt(II) complexes with sulfadiazine. Eur J Inorg Chem 2016:4835–4841. CrossRefGoogle Scholar
  17. 17.
    Villa-Pérez C, Ortega IC, Vélez-Macías A et al (2018) Crystal structure, physicochemical properties, Hirshfeld surface analysis and antibacterial activity assays of transition metal complexes of 6-methoxyquinoline. New J Chem. CrossRefGoogle Scholar
  18. 18.
    Friedrich J, Ebner R, Kunz-Schughart LA (2007) Experimental anti-tumor therapy in 3-D: spheroids—old hat or new challenge? Int J Radiat Biol 83:849–871. CrossRefPubMedGoogle Scholar
  19. 19.
    Friedrich J, Eder W, Castaneda J et al (2007) A reliable tool to determine cell viability in complex 3-D culture: the acid phosphatase assay. J Biomol Screen 12:925–937. CrossRefPubMedGoogle Scholar
  20. 20.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Franken NAP, Rodermond HM, Stap J et al (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319. CrossRefPubMedGoogle Scholar
  22. 22.
    Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226CrossRefPubMedGoogle Scholar
  23. 23.
    Fenech M (2000) The in vitro micronucleus technique. Mutat Res Mol Mech Mutagen 455:81–95. CrossRefGoogle Scholar
  24. 24.
    Anoopkumar-Dukie S, Carey JB, Conere T et al (2005) Resazurin assay of radiation response in cultured cells. Br J Radiol 78:945–947. CrossRefPubMedGoogle Scholar
  25. 25.
    Munshi A, Hobbs M, Meyn RE (2005) Clonogenic cell survival assay. Methods Mol Med 110:21–28. PubMedCrossRefGoogle Scholar
  26. 26.
    Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hirsch FR, Scagliotti GV, Mulshine JL et al (2017) Lung cancer: current therapies and new targeted treatments. Lancet 389:299–311. CrossRefPubMedGoogle Scholar
  29. 29.
    Novello S, Barlesi F, Califano R et al (2016) Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 27:V1–V27. CrossRefPubMedGoogle Scholar
  30. 30.
    Damaskos C, Tomos I, Garmpis N et al (2018) Histone deacetylase inhibitors as a novel targeted therapy against non-small cell lung cancer: where are we now and what should we expect? Anticancer Res 38:37–43. PubMedCrossRefGoogle Scholar
  31. 31.
    Yu W, Lu W, Chen G et al (2017) Inhibition of histone deacetylases sensitizes EGF receptor-TK inhibitor-resistant non-small-cell lung cancer cells to erlotinib in vitro and in vivo. Br J Pharmacol 174:3608–3622. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang L, Li H, Ren Y et al (2016) Targeting HDAC with a novel inhibitor effectively reverses paclitaxel resistance in non-small cell lung cancer via multiple mechanisms. Cell Death Dis 7:e2063. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rogolino D, Cavazzoni A, Gatti A et al (2017) Anti-proliferative effects of copper(II) complexes with hydroxyquinoline-thiosemicarbazone ligands. Eur J Med Chem 128:140–153. CrossRefPubMedGoogle Scholar
  34. 34.
    Angel NR, Khatib RM, Jenkins J et al (2017) Copper (II) complexes possessing alkyl-substituted polypyridyl ligands: structural characterization and in vitro antitumor activity. J Inorg Biochem 166:12–25. CrossRefPubMedGoogle Scholar
  35. 35.
    Stanojkovic TP, Kovala-Demertzi D, Primikyri A et al (2010) Zinc(II) complexes of 2-acetyl pyridine 1-(4-fluorophenyl)-piperazinyl thiosemicarbazone: synthesis, spectroscopic study and crystal structures—potential anticancer drugs. J Inorg Biochem 104:467–476. CrossRefPubMedGoogle Scholar
  36. 36.
    Casas JS, Castellano EE, Couce MD et al (2006) Zinc(II), cadmium(II) and mercury(II) complexes of the vitamin B1 antagonist oxythiamine. J Inorg Biochem 100:124–132. CrossRefPubMedGoogle Scholar
  37. 37.
    Cadavid-Vargas JFJ, León IE, Etcheverry SSB et al (2017) Copper(II) complexes with saccharinate and glutamine as antitumor agents: cytoand genotoxicity in human osteosarcoma cells. Anticancer Agents Med Chem 17:424–433. CrossRefPubMedGoogle Scholar
  38. 38.
    Karlsson H, Fryknäs M, Strese S et al (2017) Mechanistic characterization of a copper containing thiosemicarbazone with potent antitumor activity. Oncotarget 8:30217–30234. PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Subastri A, Suyavaran A, Preedia Babu E et al (2018) Troxerutin with copper generates oxidative stress in cancer cells: its possible chemotherapeutic mechanism against hepatocellular carcinoma. J Cell Physiol 233:1775–1790. CrossRefPubMedGoogle Scholar
  40. 40.
    Martínez VR, Aguirre MV, Todaro JS et al (2018) Azilsartan and its Zn(II) complex. Synthesis, anticancer mechanisms of action and binding to bovine serum albumin. Toxicol Vitr 48:205–220. CrossRefGoogle Scholar
  41. 41.
    Tan YS, Ooi KK, Ang KP et al (2015) Molecular mechanisms of apoptosis and cell selectivity of zinc dithiocarbamates functionalized with hydroxyethyl substituents. J Inorg Biochem 150:48–62. CrossRefPubMedGoogle Scholar
  42. 42.
    Mohammadizadeh F, Falahati-pour SK, Rezaei A et al (2018) The cytotoxicity effects of a novel Cu complex on MCF-7 human breast cancerous cells. Biometals 31:233–242. CrossRefPubMedGoogle Scholar
  43. 43.
    Gouda AM, El-Ghamry HA, Bawazeer TM et al (2018) Antitumor activity of pyrrolizines and their Cu(II) complexes: design, synthesis and cytotoxic screening with potential apoptosis-inducing activity. Eur J Med Chem 145:350–359. CrossRefPubMedGoogle Scholar
  44. 44.
    Portugal J, Mansilla S, Bataller M (2010) Mechanisms of drug-induced mitotic catastrophe in cancer cells. Curr Pharm Des 16:69–78. CrossRefPubMedGoogle Scholar
  45. 45.
    Khabour OF, Saleh N, Alzoubi KH et al (2013) Genotoxicity of structurally related copper and zinc containing Schiff base complexes. Drug Chem Toxicol 36:435–442. CrossRefPubMedGoogle Scholar
  46. 46.
    Leon I, Cadavid-Vargas J, Di Virgilio A, Etcheverry S (2017) Vanadium, ruthenium and copper compounds: a new class of nonplatinum metallodrugs with anticancer activity. Curr Med Chem 24:112–148. CrossRefPubMedGoogle Scholar
  47. 47.
    Santini C, Pellei M, Gandin V et al (2014) Advances in copper complexes as anticancer agents. Chem Rev 114:815–862. CrossRefPubMedGoogle Scholar
  48. 48.
    Serment-Guerrero J, Bravo-Gomez ME, Lara-Rivera E, Ruiz-Azuara L (2017) Genotoxic assessment of the copper chelated compounds Casiopeinas: clues about their mechanisms of action. J Inorg Biochem 166:68–75. CrossRefPubMedGoogle Scholar
  49. 49.
    Rhaese H-J, Freese E (1968) Chemical analysis of DNA alterations: I. Base liberation and backbone breakage of DNA and oligodeoxyadenylic acid induced by hydrogen peroxide and hydroxylamine. Biochim Biophys Acta Nucleic Acids Protein Synth 155:476–490. CrossRefGoogle Scholar
  50. 50.
    Adhikari A, Kumari N, Adhikari M et al (2017) Zinc complex of tryptophan appended 1,4,7,10-tetraazacyclododecane as potential anticancer agent: synthesis and evaluation. Bioorg Med Chem 25:3483–3490. CrossRefPubMedGoogle Scholar
  51. 51.
    Santra M, Das SK, Talukder G, Sharma A (2002) Induction of micronuclei by zinc in human leukocytes. Biol Trace Elem Res 88:139–144. CrossRefPubMedGoogle Scholar
  52. 52.
    Scicchitano DA, Pegg AE (1987) Inhibition of O6-alkylguanine-DNA-alkyltransferase by metals. Mutat Res Lett 192:207–210. CrossRefGoogle Scholar
  53. 53.
    Yang SW, Becker FF, Chan JYH (1996) Inhibition of human DNA ligase I activity by zinc and cadmium and the fidelity of ligation. Environ Mol Mutagen 28:19–25.;2-9 CrossRefPubMedGoogle Scholar
  54. 54.
    Xu B, Sun Z, Liu Z et al (2011) Replication stress induces micronuclei comprising of aggregated DNA double-strand breaks. PLoS One. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Galateanu B, Hudita A, Negrei C et al (2016) Impact of multicellular tumor spheroids as an in vivo-like tumor model on anticancer drug response. Int J Oncol 48:2295–2302. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Shi X, Chen Z, Wang Y et al (2018) Hypotoxic copper complexes with potent anti-metastatic and anti-angiogenic activities against cancer cells. Dalt Trans 47:5049–5054. CrossRefGoogle Scholar
  57. 57.
    Tallarida RJ (2001) Drug synergism: its detection and applications. J Pharmacol Exp Ther 298:865–872PubMedGoogle Scholar
  58. 58.
    Marcato-Romain CE, Pinelli E, Pourrut B et al (2009) Assessment of the genotoxicity of Cu and Zn in raw and anaerobically digested slurry with the Vicia faba micronucleus test. Mutat Res Genet Toxicol Environ Mutagen 672:113–118. CrossRefGoogle Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  • J. F. Cadavid-Vargas
    • 1
    • 2
  • C. Villa-Pérez
    • 1
  • M. C. Ruiz
    • 1
    • 2
  • I. E. León
    • 1
  • G. C. Valencia-Uribe
    • 3
  • D. B. Soria
    • 1
  • S. B. Etcheverry
    • 1
    • 2
  • A. L. Di Virgilio
    • 1
    • 2
    Email author
  1. 1.CEQUINOR (CONICET-UNLP)La PlataArgentina
  2. 2.Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.GIAFOT, Departamento de Química, Facultad de CienciasUniversidad Nacional de Colombia-Sede MedellínMedellínColombia

Personalised recommendations