Advertisement

In vitro anticancer active cis-Pt(II)-diiodido complexes containing 4-azaindoles

  • Pavel Štarha
  • Zdeněk TrávníčekEmail author
  • Ján Vančo
  • Zdeněk Dvořák
Original Paper

Abstract

4-Azaindole (1H-pyrrolo[3,2-b]pyridine; 4aza) and its N1-alkylated derivative N1-isopropyl-4-azaindole (1-(propan-2-yl)-1H-pyrrolo[3,2-b]pyridine; ip4aza) have been used for the preparation of the cis-diiodido-platinum(II) complexes cis-[Pt(4aza)2I2] (1), cis-[PtI2(ip4aza)2] (2), cis-[Pt(4aza)I2(NH3)] (3) and cis-[PtI2(ip4aza)(NH3)] (4). The prepared complexes were thoroughly characterized (e.g., multinuclear NMR spectroscopy and ESI mass spectrometry) and their in vitro cytotoxicity was assessed at human ovarian carcinoma (A2780), cisplatin-resistant ovarian carcinoma (A2780R) and colon carcinoma (HT-29) cell lines, where they showed, in some cases, significantly higher activity than the used reference-drug cisplatin. The results of in vitro cytotoxicity testing at the A2780 and A2780R cells indicated that alkylation of the 4-azaindole moiety at the position of the N1 atom had a positive biological effect, because the ip4aza-containing complexes 2 and 4 showed significantly (p < 0.005) higher cytotoxicity than 4aza-containing analogues 1 and 3. The resistance factors (A2780R/A2780 model) equalled 0.8–1.4, indicating the ability of complexes 14 to overcome the acquired resistance of the A2780 cells against cisplatin. Complexes 1 and 2 revealed low toxicity against primary culture of human hepatocytes. The flow cytometry studies of the A2780 cell cycle modification showed that complexes 14 induce different cell cycle perturbations as compared with cisplatin, thus suggesting a different mechanism of their antitumor action.

Keywords

Platinum(II) complexes 4-Azaindole Iodido Cytotoxicity In vitro 

Notes

Acknowledgements

The authors gratefully thank the National Program of Sustainability I (LO1305) of the Ministry of Education, Youth and Sports of the Czech Republic and Palacký University in Olomouc (a Grant No. PrF_2018_011) for financial support. The authors also thank Ms. Kateřina Kubešová and Ms. Marta Rešová for performing the in vitro cytotoxicity experiments and preparation of the samples for cellular accumulation and flow cytometry experiments, Dr. Bohuslav Drahoš for recording the ESI–MS and NMR spectra, Dr. Alena Klanicová for performing FTIR spectroscopy and Mrs. Pavla Richterová for carrying out elemental analyses. The authors also thank Mr. Ivan Saksa for his help with the syntheses of the studied compounds.

Supplementary material

775_2019_1643_MOESM1_ESM.pdf (633 kb)
Supplementary material 1 (PDF 632 kb)

References

  1. 1.
    Kelland L (2007) Nat Rev Cancer 7:573–584Google Scholar
  2. 2.
    Rosenberg B, van Camp L, Krigas T (1965) Nature 205:698–699Google Scholar
  3. 3.
    World Health Organization (2017) WHO model list of essential medicines. WHO, GenevaGoogle Scholar
  4. 4.
    Johnstone TC, Suntharalingam K, Lippard SJ (2016) Chem Rev 116:3436–3486PubMedCentralGoogle Scholar
  5. 5.
    Park GA, Wilson JJ, Song Y, Lippard SJ (2012) Proc Natl Acad Sci USA 109:11987–11992Google Scholar
  6. 6.
    Li JJ, Tian M, Tian Z, Zhang S, Yan C, Shao C, Liu Z (2018) Inorg Chem 57:1705–1716Google Scholar
  7. 7.
    Yang GJ, Zhong HJ, Ko CN, Wong SY, Vellaisamy K, Ye M, Ma DL, Leung CH (2018) Chem Commun 54:2463–2466Google Scholar
  8. 8.
    Štarha P, Trávníček Z, Dvořák Z (2018) Chem Commun 54:9533–9536Google Scholar
  9. 9.
    Mukherjee N, Podder S, Mitra K, Majumdar S, Nandi D, Chakravarty AR (2018) Dalton Trans 47:823–835Google Scholar
  10. 10.
    Zhao SB, Wang S (2010) Chem Soc Rev 39:3142–3156Google Scholar
  11. 11.
    Harrison RC, McAuliffe CA, Friedman ME (1984) Inorg Chim Acta 92:43–46Google Scholar
  12. 12.
    Štarha P, Marek J, Trávníček Z (2012) Polyhedron 33:404–409Google Scholar
  13. 13.
    Štarha P, Trávníček Z, Popa A, Popa I, Muchová T, Brabec V (2012) J Inorg Biochem 115:57–63Google Scholar
  14. 14.
    New EJ, Roche C, Madawala R, Zhang JZ, Hambley TW (2009) J Inorg Biochem 103:1120–1125Google Scholar
  15. 15.
    Pracharova J, Saltarella T, Radosova Muchova T, Scintilla S, Novohradsky V, Novakova O, Intini FP, Pacifico C, Natile G, Ilik P, Brabec V, Kasparkova J (2015) J Med Chem 58:847–859Google Scholar
  16. 16.
    Štarha P, Trávníček Z, Dvořák Z, Radošová-Muchová T, Prachařová J, Vančo J, Kašpárková J (2015) PLoS One 10:e0123595PubMedCentralGoogle Scholar
  17. 17.
    Štarha P, Trávníček Z, Popa I, Dvořák Z (2014) Molecules 19:10832–10844PubMedCentralGoogle Scholar
  18. 18.
    Štarha P, Trávníček Z, Pazderová L, Dvořák Z (2016) J Inorg Biochem 162:109–116Google Scholar
  19. 19.
    Štarha P, Vančo J, Trávníček Z, Hošek J, Klusáková J, Dvořák Z (2016) PLoS One 11:e0165062PubMedCentralGoogle Scholar
  20. 20.
    Štarha P, Hošek J, Vančo J, Dvořák Z, Suchý P Jr, Popa I, Pražanová G, Trávníček Z (2014) PLoS One 9:e90341PubMedCentralGoogle Scholar
  21. 21.
    Štarha P, Dvořák Z, Trávníček Z (2015) PLoS One 10:e0136338PubMedCentralGoogle Scholar
  22. 22.
    Muchová T, Prachařová J, Štarha P, Olivová R, Vrána O, Benešová B, Kašpárková J, Trávníček Z, Brabec V (2013) J Biol Inorg Chem 18:579–589Google Scholar
  23. 23.
    Štarha P, Vančo J, Trávníček Z (2019) Coord Chem Rev 380:103–135Google Scholar
  24. 24.
    Messori L, Cubo L, Gabbiani C, Alvarez-Valdes A, Michelucci E, Pieraccini G, Rios-Luci C, Leon LG, Padron JM, Navarro-Ranninger C, Casini A, Quiroga AG (2012) Inorg Chem 51:1717–1726Google Scholar
  25. 25.
    Sá DS, Fernandes AF, Silva CDS, Costa PPC, Fonteles MC, Nascimento NRF, Lopes LGF, Sousa EHS (2015) Dalton Trans 44:13633–13640Google Scholar
  26. 26.
    Przyojski JA, Kiewit ML, Fillman KL, Arman HD, Tonzetich ZJ (2015) Inorg Chem 54:9637–9645PubMedCentralGoogle Scholar
  27. 27.
    Chatterji M, Shandil R, Manjunatha MR, Solapure S, Ramachandran V, Kumar N, Saralaya R, Panduga V, Reddy J, Prabhakar KR, Sharma S, Sadler C, Cooper CB, Mdluli K, Iyer PS, Narayanan S, Shirude PS (2014) Antimicrob Agents Chemother 58:5325–5331PubMedCentralGoogle Scholar
  28. 28.
    Shirude PS, Shandil RK, Manjunatha MR, Sadler C, Panda M, Panduga V, Reddy J, Saralaya R, Nanduri R, Ambady A, Ravishankar S, Sambandamurthy VK, Humnabadkar V, Jena LK, Suresh RS, Srivastava A, Prabhakar KR, Whiteaker J, McLaughlin RE, Sharma S, Cooper CB, Mdluli K, Butler S, Iyer PS, Narayanan S, Chatterji M (2014) J Med Chem 57:5728–5737Google Scholar
  29. 29.
    Lee W, Crawford JJ, Aliagas I, Murray LJ, Tay S, Wang WR, Heise CE, Hoeflich KP, La H, Mathieu S, Mintzer R, Ramaswamy S, Rouge L, Rudolph J (2016) Bioorg Med Chem Lett 26:3518–3524Google Scholar
  30. 30.
    Wang T, Yang Z, Zhang ZX, Gong YF, Riccardi KA, Lin PF, Parker DD, Rahematpura S, Mathew M, Zheng M, Meanwell NA, Kadow JF, Bender JA (2013) Bioorg Med Chem Lett 23:213–217Google Scholar
  31. 31.
    Pin F, Buron F, Saab F, Colliandre L, Bourg S, Schoentgen F, Le Guevel R, Guillouzo C, Routier S (2011) Med Chem Commun 2:899–903Google Scholar
  32. 32.
    Łakomska I, Fandzloch M, Popławska B, Sitkowski J (2012) Spectrochim Acta A 91:126–129Google Scholar
  33. 33.
    Margiotta N, Denora N, Ostuni R, Laquintana V, Anderson A, Johnson SW, Trapani G, Natile G (2010) J Med Chem 53:5144–5154Google Scholar
  34. 34.
    Battle AR, Choi R, Hibbs DE, Hambley TW (2006) Inorg Chem 45:6317–6322Google Scholar
  35. 35.
    Gottlieb HE, Kotlyar V, Nudelman A (1997) J Org Chem 62:7512–7515Google Scholar
  36. 36.
    Massoud SS, Louka FR, Ducharme GT, Fischer RC, Mautner FA, Vančo J, Herchel R, Dvořák Z, Trávníček Z (2018) J Inorg Biochem 180:39–46Google Scholar
  37. 37.
    Rochon FD, Buculei V (2004) Inorg Chim Acta 357:2218–2230Google Scholar
  38. 38.
    Malik M, Wysokiński R, Zierkiewicz W, Helios K, Michalska D (2014) J Phys Chem A 118:6922–6934Google Scholar
  39. 39.
    Ruiz J, Rodríguez V, de Haro C, Espinosa A, Pérez J, Janiak C (2010) Dalton Trans 39:3290–3301Google Scholar
  40. 40.
    Zamora A, Rodríguez V, Cutillas N, Yellol GS, Espinosa A, Samper KG, Capdevila M, Palacios Ó, Ruiz J (2013) J Inorg Biochem 128:48–56Google Scholar
  41. 41.
    Pracharova J, Radosova Muchova T, Dvorak Tomastikova E, Intini FP, Pacifico C, Natile G, Kasparkova J, Brabec V (2016) Dalton Trans 45:13179–13186Google Scholar
  42. 42.
    Colley HE, Muthana M, Danson SJ, Jackson LV, Brett ML, Harrison J, Coole SF, Mason DP, Jennings LR, Wong M, Tulasi V, Norman D, Lockey PM, Williams L, Dossetter AG, Griffen EJ, Thompson MJ (2015) J Med Chem 58:9309–9333Google Scholar
  43. 43.
    Rochon FD, Titouna H (2010) Inorg Chim Acta 363:1679–1693Google Scholar
  44. 44.
    Marzo T, Pillozzi S, Hrabina O, Kasparkova J, Brabec V, Arcangeli A, Bartoli G, Severi M, Lunghi A, Totti F, Gabbiani C, Quiroga AG, Messori L (2015) Dalton Trans 44:14896–14905Google Scholar
  45. 45.
    Messori L, Casini A, Gabbiani C, Michelucci E, Cubo L, Rios-Luci C, Padron JM, Navarro-Ranninger C, Quiroga AG (2010) ACS Med Chem Lett 1:381–385PubMedCentralGoogle Scholar
  46. 46.
    Cirri D, Pillozzi S, Gabbiani C, Tricomi J, Bartoli G, Stefanini M, Michelucci E, Arcangeli A, Messori L, Marzo T (2017) Dalton Trans 46:3311–3317Google Scholar
  47. 47.
    Schmitt F, Donnelly K, Muenzner JK, Rehm T, Novohradsky V, Brabec V, Kasparkova J, Albrecht M, Schobert R, Mueller T (2016) J Inorg Biochem 163:221–228Google Scholar
  48. 48.
    Vančo J, Trávníček Z, Křikavová R, Gáliková J, Chalupová M, Dvořák Z (2017) J Photochem Photobiol B Biol 173:423–433Google Scholar
  49. 49.
    Betzer JF, Nuter F, Chtchigrovsky M, Hamon F, Kellermann G, Ali S, Calméjane MA, Roque S, Poupon J, Cresteil T, Teulade-Fichou MP, Marinetti A, Bombard S (2016) Bioconj Chem 27:1456–1470Google Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  1. 1.Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of SciencePalacký University in OlomoucOlomoucCzech Republic

Personalised recommendations