Advertisement

Fluoride and azide binding to ferric human hemoglobin:haptoglobin complexes highlights the ligand-dependent inequivalence of the α and β hemoglobin chains

  • Paolo AscenziEmail author
  • Alessandra di Masi
  • Giovanna De Simone
  • Magda Gioia
  • Massimo Coletta
Original Paper
  • 25 Downloads

Abstract

Haptoglobin (Hp) binds human hemoglobin (Hb), contributing to prevent extra-erythrocytic Hb-induced damage. Hp forms preferentially complexes with αβ dimers, displaying heme-based reactivity. Here, kinetics and thermodynamics of fluoride and azide binding to ferric human Hb (Hb(III)) complexed with the human Hp phenotypes 1-1 and 2-2 (Hp1-1:Hb(III) and Hp2-2:Hb(III), respectively) are reported (pH 7.0 and 20.0 °C). Fluoride binds to Hp1-1:Hb(III) and Hp2-2:Hb(III) with a one-step kinetic and equilibrium behavior. In contrast, kinetics of azide binding to and dissociation from Hp1-1:Hb(III)(–N3) and Hp2-2:Hb(III)(–N3) follow a two-step process. However, azide binding to Hp1-1:Hb(III) and Hp2-2:Hb(III) is characterized by a simple equilibrium, reflecting the compensation of kinetic parameters. The fast and the slow step of azide binding to Hp1-1:Hb(III) and Hp2-2:Hb(III) should reflect azide binding to the ferric β and α chains, respectively, as also proposed for the similar behavior observed in Hb(III). Present results highlight the ligand-dependent kinetic inequivalence of Hb subunits in the ferric form, reflecting structural differences between the two subunits in the interaction with some ferric ligands.

Graphical abstract

Keywords

Human haptoglobin 1-1:hemoglobin complex Human haptoglobin 2-2:hemoglobin complex Azide binding Fluoride binding Kinetics Thermodynamics 

Abbreviations

CCP domain

Complement control protein domain

Hb

Human hemoglobin

Hb(III)

Ferric Hb

Hp

Human haptoglobin

Hp1-1

Phenotype 1-1 of Hp

Hp2-2

Phenotype 2-2 of Hp

Hp1-1:Hb(III)

Ferric Hp1-1:Hb complex

Hp2-2:Hb(III)

Ferric Hp 2-2:Hb complex

SP-like domain

Serine protease-like domain

Notes

Acknowledgements

The Grant of Dipartimenti di Eccellenza, MIUR (Legge 232/2016, Articolo 1, Comma 314-337) is gratefully acknowledged.

References

  1. 1.
    Muller-Eberhard U, Javid J, Liem HH, Hanstein A, Hanna M (1968) Blood 32:811–815Google Scholar
  2. 2.
    Bunn HF, Forget BG (1986) Hemoglobin: molecular, genetic and clinical aspects. Saunders, PhiladelphiaGoogle Scholar
  3. 3.
    Ascenzi P, Bocedi A, Visca P, Altruda F, Tolosano E, Beringhelli T, Fasano M (2005) IUBMB Life 57:749–759CrossRefGoogle Scholar
  4. 4.
    Alayash AI, Andersen CB, Moestrup SK, Bülow L (2013) Trends Biotechnol 31:2–3CrossRefGoogle Scholar
  5. 5.
    Alayash AI (2004) Nat Rev Drug Discov 3:152–159CrossRefGoogle Scholar
  6. 6.
    Schaer DJ, Vinchi F, Ingoglia G, Tolosano E, Buehler PW (2014) Front Physiol 5:415CrossRefGoogle Scholar
  7. 7.
    MacKellar M, Vigerust DJ (2016) Clin Diabetes 34:148–157CrossRefGoogle Scholar
  8. 8.
    Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, Moestrup SK (2001) Nature 409:198–201CrossRefGoogle Scholar
  9. 9.
    Buehler PW, Abraham B, Vallelian F, Linnemayr C, Pereira CP, Cipollo JF, Jia Y, Mikolajczyk M, Boretti FS, Schoedon G, Alayash AI, Schaer DJ (2009) Blood 113:2578–2586CrossRefGoogle Scholar
  10. 10.
    Kaempfer T, Duerst E, Gehrig P, Roschitzki B, Rutishauser D, Grossmann J, Schoedon G, Vallelian F, Schaer DJ (2011) J Proteome Res 10:2397–2408CrossRefGoogle Scholar
  11. 11.
    Andersen CBF, Stødkilde K, Sæderup KL, Kuhlee A, Raunser S, Graversen JH, Moestrup SK (2017) Antioxid Redox Signal 26:814–831CrossRefGoogle Scholar
  12. 12.
    Polticelli F, Bocedi A, Minervini G, Ascenzi P (2008) FEBS J 275:5648–5656CrossRefGoogle Scholar
  13. 13.
    Andersen CB, Torvund-Jensen M, Nielsen MJ, de Oliveira CL, Hersleth HP, Andersen NH, Pedersen JS, Andersen GR, Moestrup SK (2012) Nature 489:456–459CrossRefGoogle Scholar
  14. 14.
    Stødkilde K, Torvund-Jensen M, Moestrup SK, Andersen CB (2014) Nat Commun 5:5487CrossRefGoogle Scholar
  15. 15.
    Kurosky A, Barnett DR, Lee TH, Touchstone B, Hay RE, Arnott MS, Bowman BH, Fitch WM (1980) Proc Natl Acad Sci USA 77:3388–3392CrossRefGoogle Scholar
  16. 16.
    Wejman JC, Hovsepian D, Wall JS, Hainfeld JF, Greer J (1984) J Mol Biol 174:319–341CrossRefGoogle Scholar
  17. 17.
    Wejman JC, Hovsepian D, Wall JS, Hainfeld JF, Greer J (1984) J Mol Biol 174:343–368CrossRefGoogle Scholar
  18. 18.
    Nagel RL, Gibson QH (1971) J Biol Chem 246:69–73Google Scholar
  19. 19.
    Nagel RL, Wittenberg JB, Ranney HM (1965) Biochim Biophys Acta 100:286–289CrossRefGoogle Scholar
  20. 20.
    Nagel RL, Gibson QH (1966) J Mol Biol 22:249–255CrossRefGoogle Scholar
  21. 21.
    Brunori M, Alfsen A, Saggese U, Antonini E, Wyman J (1968) J Biol Chem 243:2950–2954Google Scholar
  22. 22.
    Gibson QH, Parkhurst LJ, Geraci G (1969) J Biol Chem 244:4668–4676Google Scholar
  23. 23.
    Alfsen A, Chiancone E, Antonini E, Waks M, Wyman J (1970) Biochim Biophys Acta 207:395–403CrossRefGoogle Scholar
  24. 24.
    Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reactions with ligands. North Holland Publishing Co, AmsterdamGoogle Scholar
  25. 25.
    Chiancone E, Antonini E, Brunori M, Alfsen A, Lavialle F (1973) Biochem J 133:205–207CrossRefGoogle Scholar
  26. 26.
    Perutz MF (1979) Annu Rev Biochem 48:327–386CrossRefGoogle Scholar
  27. 27.
    Azarov I, He X, Jeffers A, Basu S, Ucer B, Hantgan RR, Levy A, Kim-Shapiro DB (2008) Nitric Oxide 18:296–302CrossRefGoogle Scholar
  28. 28.
    Ascenzi P, Tundo GR, Coletta M (2018) J Inorg Biochem 187:116–122CrossRefGoogle Scholar
  29. 29.
    Coletta M, Angeletti M, De Sanctis G, Cerroni L, Giardina B, Amiconi G, Ascenzi P (1996) Eur J Biochem 235:49–53CrossRefGoogle Scholar
  30. 30.
    Ackers GK, Doyle ML, Myers D, Daugherty MA (1992) Science 255:54–63CrossRefGoogle Scholar
  31. 31.
    White SL (1975) J Biol Chem 250:1263–1268Google Scholar
  32. 32.
    Ascenzi P, De Simone G, Polticelli F, Gioia M, Coletta M (2018) J Biol Inorg Chem 23:437–445CrossRefGoogle Scholar
  33. 33.
    Ascenzi P, Coletta M (2018) J Phys Chem B 122:11100–11107CrossRefGoogle Scholar
  34. 34.
    Herold S, Shivashankar K (2003) Biochemistry 42:14036–14046CrossRefGoogle Scholar
  35. 35.
    Klapper MH, Uchida H (1971) J Biol Chem 246:6849–6854Google Scholar
  36. 36.
    Deatherage JF, Loe RS, Moffat K (1976) J Mol Biol 104:723–728CrossRefGoogle Scholar
  37. 37.
    Deatherage JF, Obendorf SK, Moffat K (1979) J Mol Biol 134:419–429CrossRefGoogle Scholar
  38. 38.
    Banerjee S, Jia Y, Siburt CJ, Abraham B, Wood F, Bonaventura C, Henkens R, Crumbliss AL, Alayash AI (2012) Free Radic Biol Med 53:1317–1326CrossRefGoogle Scholar
  39. 39.
    Anusiem AC, Beetlestone JG, Irvine DH (1968) J Chem Soc A 960–969Google Scholar
  40. 40.
    Bailey JE, Beetlestone JG, Irvine DH (1968) J Chem Soc A 2778–2783Google Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  • Paolo Ascenzi
    • 1
    Email author
  • Alessandra di Masi
    • 2
  • Giovanna De Simone
    • 2
  • Magda Gioia
    • 3
    • 4
  • Massimo Coletta
    • 3
    • 4
  1. 1.Interdepartmental Laboratory for Electron MicroscopyRoma Tre UniversityRomaItaly
  2. 2.Department of SciencesRoma Tre UniversityRomaItaly
  3. 3.Department of Clinical Sciences and Translational MedicineUniversity of Roma “Tor Vergata”Roma,Italy
  4. 4.Interuniversity Consortium for the Research on the Chemistry of Metals in Biological SystemsBariItaly

Personalised recommendations