Advertisement

Unravelling the antitumoral potential of novel bis(thiosemicarbazonato) Zn(II) complexes: structural and cellular studies

  • Elisa Palma
  • Hugo M. Botelho
  • Goreti Ribeiro Morais
  • Inês Rodrigues
  • Isabel Cordeiro Santos
  • Maria Paula Cabral Campello
  • Paula Raposinho
  • Ana Belchior
  • Susana Sousa Gomes
  • Maria Fátima Araújo
  • Isabel Correia
  • Nadia Ribeiro
  • Sofia Gama
  • Filipa MendesEmail author
  • António PauloEmail author
Original Paper
  • 73 Downloads

Abstract

The development of pharmacologically active compounds based on bis(thiosemicarbazones) (BTSC) and on their coordination to metal centers constitutes a promising field of research. We have recently explored this class of ligands and their Cu(II) complexes for the design of cancer theranostics agents with enhanced uptake by tumoral cells. In the present work, we expand our focus to aliphatic and aromatic BTSC Zn(II) complexes bearing piperidine/morpholine pendant arms. The new complexes ZnL1ZnL4 were characterized by a variety of analytical techniques, which included single-crystal X-ray crystallography for ZnL2 and ZnL3. Taking advantage of the fluorescent properties of the aromatic complexes, we investigated their cellular uptake kinetics and subcellular localization. Furthermore, we tried to elucidate the mechanism of action of the cytotoxic effect observed in human cancer cell line models. The results show that the aliphatic complexes (ZnL1 and ZnL2) have a symmetrical structure, while the aromatic counterparts (ZnL3 and ZnL4) have an asymmetrical nature. The cytotoxic activity was higher for the aromatic BTSC complexes, as well as the cellular uptake, evaluated by measurement of intracellular Zn accumulation. Among the most active complexes, ZnL3 presented the fastest uptake kinetics and lysosomal localization assessed by live-cell microscopy. Detailed studies of its impact on cellular production of reactive oxygen species and impairment of lysosomal membrane integrity reinforced the influence of the pendant piperidine in the biological performance of aromatic BTSC Zn(II) complexes.

Keywords

Zinc Bis(thiosemicarbazones) X-ray diffraction Fluorescence imaging Cellular studies 

Notes

Acknowledgements

This work was supported by Fundação para a Ciência e Tecnologia (projects PTDC/QUI–QUI/114139/2009, RECI/QEQ-QIN/0189/2012, EXCL/QEQ-MED/0233/2012, UID/Multi/04349/2013 (to C2TN) and UID/Multi/04046/2013 (to BioISI); fellowships SFRH/BPD/29564/2006, SFRH/BPD/80758/2011, SFRH/BPD/93017/2013 and SFRH/BPD/112654/2015 to S. Gama, E. Palma and H.M: Botelho, respectively, and Grants Ciência 2008 to G. Ribeiro Morais and FCT Investigator to F. Mendes and I. Correia) and Collaborative Research Centre ChemBioSys (CRC 1127) funded by the Deutsche Forschungsgemeinschaft (DFG). The authors would also like to thank Pedro Reis for the elemental analyses measurements. We also thank the Fundação para a Ciência e a Tecnologia for financial support through RNEM—Portuguese Mass Spectrometry Network. The authors declare no competing financial interest.

Supplementary material

775_2018_1629_MOESM1_ESM.docx (32 kb)
Summary of crystallographic data NMR and fluorescence spectra See DOI:  https://doi.org/10.1007/s00775-018-1629-6 (DOCX 31 kb)

References

  1. 1.
    Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C (2014) Advances in copper complexes as anticancer agents. Chem Rev 114(1):815–862CrossRefGoogle Scholar
  2. 2.
    Shuhong C, Xiahui C, Ligen C, Jingwen C (2016) α(N)-Heterocyclic thiosemicarbazones: iron chelators that are promising for revival of gallium in cancer chemotherapy. Anti-Cancer Agents Med Chem 16(8):973–991CrossRefGoogle Scholar
  3. 3.
    Stacy AE, Palanimuthu D, Bernhardt PV, Kalinowski DS, Jansson PJ, Richardson DR (2016) Zinc(II)–thiosemicarbazone complexes are localized to the lysosomal compartment where they transmetallate with copper ions to induce cytotoxicity. J Med Chem 59(10):4965–4984CrossRefGoogle Scholar
  4. 4.
    Park KC, Fouani L, Jansson PJ, Wooi D, Sahni S, Lane DJR, Palanimuthu D, Lok HC, Kovacevic Z, Huang MLH, Kalinowski DS, Richardson DR (2016) Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics 8(9):874–886CrossRefGoogle Scholar
  5. 5.
    Cortezon-Tamarit F, Sarpaki S, Calatayud DG, Mirabello V, Pascu SI (2016) Applications of “hot” and “cold” bis(thiosemicarbazonato) metal complexes in multimodal imaging. Chem Rec 16(3):1380–1397CrossRefGoogle Scholar
  6. 6.
    Dehdashti F, Mintun MA, Lewis JS, Bradley J, Govindan R, Laforest R, Welch MJ, Siegel BA (2003) In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging 30(6):844–850CrossRefGoogle Scholar
  7. 7.
    Holland JP, Lewis JS, Dehdashti F (2009) Assessing tumor hypoxia by positron emission tomography with Cu-ATSM. Q J Nucl Med Mol Imaging 53(2):193–200PubMedPubMedCentralGoogle Scholar
  8. 8.
    Carlin S, Humm JL (2012) PET of hypoxia: current and future perspectives. J Nucl Med 53(8):1171–1174CrossRefGoogle Scholar
  9. 9.
    Jansson PJ, Kalinowski DS, Lane DJR, Kovacevic Z, Seebacher NA, Fouani L, Sahni S, Merlot AM, Richardson DR (2015) The renaissance of polypharmacology in the development of anti-cancer therapeutics: inhibition of the “triad of death” in cancer by Di-2-pyridylketone thiosemicarbazones. Pharmacol Res 100 (Supplement:C):255–260Google Scholar
  10. 10.
    Guo Z-L, Richardson DR, Kalinowski DS, Kovacevic Z, Tan-Un KC, Chan GC-F (2016) The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. J Hematol Oncol 9(1):98CrossRefGoogle Scholar
  11. 11.
    Stacy AE, Palanimuthu D, Bernhardt PV, Kalinowski DS, Jansson PJ, Richardson DR (2016) Structure-activity relationships of Di-2-pyridylketone, 2-Benzoylpyridine, and 2-Acetylpyridine thiosemicarbazones for overcoming Pgp-mediated drug resistance. J Med Chem 59(18):8601–8620CrossRefGoogle Scholar
  12. 12.
    Gutierrez EM, Seebacher NA, Arzuman L, Kovacevic Z, Lane DJ, Richardson V (2016) Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-proliferative agent, Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Biochim Biophys Acta 1863:1665–1681CrossRefGoogle Scholar
  13. 13.
    Stefani C, Al-Eisawi Z, Jansson PJ, Kalinowski DS, Richardson DR (2015) Identification of differential anti-neoplastic activity of copper bis(thiosemicarbazones) that is mediated by intracellular reactive oxygen species generation and lysosomal membrane permeabilization. J Inorg Biochem 152:20–37CrossRefGoogle Scholar
  14. 14.
    Palma E, Mendes F, Morais GR, Rodrigues I, Santos IC, Campello MP, Raposinho P, Correia I, Gama S, Belo D, Alves V, Abrunhosa AJ, Santos I, Paulo A (2017) Biophysical characterization and antineoplastic activity of new bis(thiosemicarbazonato) Cu(II) complexes. J Inorg Biochem 167:68–79CrossRefGoogle Scholar
  15. 15.
    Fan J, Han Z, Kang Y, Peng X (2016) A two-photon fluorescent probe for lysosomal thiols in live cells and tissues. Sci Rep 6:19562CrossRefGoogle Scholar
  16. 16.
    Daum S, Reshetnikov MSV, Sisa M, Dumych T, Lootsik MD, Bilyy R, Bila E, Janko C, Alexiou C, Herrmann M, Sellner L, Mokhir A (2017) Lysosome-targeting amplifiers of reactive oxygen species as anticancer prodrugs. Angew Chem Int Ed Engl 56(49):15545–15549CrossRefGoogle Scholar
  17. 17.
    Pascu SI, Waghorn PA, Conry TD, Betts HM, Dilworth JR, Churchill GC, Pokrovska T, Christlieb M, Aigbirhio FI, Warren JE (2007) Designing Zn(ii) and Cu(ii) derivatives as probes for in vitro fluorescence imaging. Dalton Trans 43:4988–4997CrossRefGoogle Scholar
  18. 18.
    Pascu SI, Waghorn PA, Conry TD, Lin B, Betts HM, Dilworth JR, Sim RB, Churchill GC, Aigbirhio FI, Warren JE (2008) Cellular confocal fluorescence studies and cytotoxic activity of new Zn(II) bis(thiosemicarbazonato) complexes. Dalton Trans 16:2107–2110CrossRefGoogle Scholar
  19. 19.
    Alam IS, Arrowsmith RL, Cortezon-Tamarit F, Twyman F, Kociok-Kohn G, Botchway SW, Dilworth JR, Carroll L, Aboagye EO, Pascu SI (2016) Microwave gallium-68 radiochemistry for kinetically stable bis(thiosemicarbazone) complexes: structural investigations and cellular uptake under hypoxia. Dalton Trans 45(1):144–155CrossRefGoogle Scholar
  20. 20.
    Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC (1984) Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2[prime or minute]-yl)-2,6-dithiaheptane]copper(II) perchlorate. J Chem Soc, Dalton Trans 7:1349–1356CrossRefGoogle Scholar
  21. 21.
    Yang W, Ma Z, Yi J, Sun W-H (2017) Quantitative structure-thermostability relationship of late transition metal catalysts in ethylene oligo/polymerization. Catalysts 7(4):120CrossRefGoogle Scholar
  22. 22.
    López-Torres E, Mendiola MA, Rodrı́guez-Procopio J, Sevilla MT, Colacio E, Ma Moreno J, Sobrados I (2001) Synthesis and characterisation of zinc, cadmium and mercury complexes of benzilbisthiosemicarbazone. Structure of cadmium derivative. Inorg Chim Acta 323(1):130–138CrossRefGoogle Scholar
  23. 23.
    Christlieb M, Holland JP, Dilworth JR (2010) Investigation of the UV–Vis absorption of bis(N-methylthiosemicarbazonato) zinc Zn[ATSM]. Inorg Chim Acta 363(6):1133–1139CrossRefGoogle Scholar
  24. 24.
    Cowley AR, Davis J, Dilworth JR, Donnelly PS, Dobson R, Nightingale A, Peach JM, Shore B, Kerr D, Seymour L (2005) Fluorescence studies of the intra-cellular distribution of zinc bis(thiosemicarbazone) complexes in human cancer cells. Chem Commun 7:845–847CrossRefGoogle Scholar
  25. 25.
    Holland JP, Aigbirhio FI, Betts HM, Bonnitcha PD, Burke P, Christlieb M, Churchill GC, Cowley AR, Dilworth JR, Donnelly PS, Green JC, Peach JM, Vasudevan SR, Warren JE (2007) Functionalized Bis(thiosemicarbazonato) complexes of zinc and copper: synthetic platforms toward site-specific radiopharmaceuticals. Inorg Chem 46(2):465–485CrossRefGoogle Scholar
  26. 26.
    Brown OC, Tocher DA, Blower PJ, Went MJ (2015) Crystal structure of [butane-2,3-dione bis-(4-methyl-thio-semicarbazonato)-kappa(4) S, N (1), N (1′), S’](pyridine-kappaN)zinc(II). Acta Crystallogr, Sect E: Crystallogr Commun 71(Pt 11):1349–1351CrossRefGoogle Scholar
  27. 27.
    Blower PJ, Castle TC, Cowley AR, Dilworth JR, Donnelly PS, Labisbal E, Sowrey FE, Teat SJ, Went MJ (2003) Structural trends in copper(II) bis(thiosemicarbazone) radiopharmaceuticals. Dalton Trans 23:4416–4425CrossRefGoogle Scholar
  28. 28.
    West DX, Ives JS, Bain GA, Liberta AE, ValdesMartinez J, Ebert KH, HernandezOrtega S (1997) Copper(II) and nickel(II) complexes of 2,3-butanedione bis(N(3)-substituted thiosemicarbazones). Polyhedron 16(11):1895–1905CrossRefGoogle Scholar
  29. 29.
    West DX, Liberta AE, Padhye SB, Chikate RC, Sonawane PB, Kumbhar AS, Yerande RG (1993) Thiosemicarbazone complexes of copper(Ii)—structural and biological studies. Coordin Chem Rev 123(1–2):49–71CrossRefGoogle Scholar
  30. 30.
    Gonzalez-Garcia C, Mendiola MA, Perles J, Lopez-Torres E (2017) Structural diversity and supramolecular architectures of Zn(ii), Cu(ii) and Ni(ii) complexes by selective control of the degree of deprotonation of diacetyl bis(4-isopropyl-3-thiosemicarbazone). CrystEngComm 19(7):1035–1044CrossRefGoogle Scholar
  31. 31.
    Shao J, Ma ZY, Li A, Liu YH, Xie CZ, Qiang ZY, Xu JY (2014) Thiosemicarbazone Cu(II) and Zn(II) complexes as potential anticancer agents: syntheses, crystal structure, DNA cleavage, cytotoxicity and apoptosis induction activity. J Inorg Biochem 136:13–23CrossRefGoogle Scholar
  32. 32.
    Brouwer Albert M (2011) Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl Chem 83(12):2213CrossRefGoogle Scholar
  33. 33.
    Eaton DF (1988) Reference materials for fluorescence measurement. Pure Appl Chem 60(7):1107CrossRefGoogle Scholar
  34. 34.
    Hashemi M, Ghavami S, Eshraghi M, Booy EP, Los MJ (2007) Cytotoxic effects of intra and extracellular zinc chelation on human breast cancer cells. Eur J Pharmacol 557(1):9–19CrossRefGoogle Scholar
  35. 35.
    Gomes A, Fernandes E, Lima JL (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65(2–3):45–80CrossRefGoogle Scholar
  36. 36.
    Cesen MH, Pegan K, Spes A, Turk B (2012) Lysosomal pathways to cell death and their therapeutic applications. Exp Cell Res 318(11):1245–1251CrossRefGoogle Scholar
  37. 37.
    SMART, SAINT and SADABS (2005) Bruker AXS Inc., Madison, Wisconsin, USA. SMART, SAINT and SADABSGoogle Scholar
  38. 38.
    Sheldrick SGM (2004) Bruker AXS Inc. Madison, Wisconsin, USAGoogle Scholar
  39. 39.
    Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) SIR97: a new tool for crystal structure determination and refinement. J Appl Crystallogr 32(1):115–119CrossRefGoogle Scholar
  40. 40.
    Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A: Found Crystallogr 64(Pt 1):112–122CrossRefGoogle Scholar
  41. 41.
    Farrugia L (2012) WinGX and ORTEP for Windows: an update. J Appl Crystallogr 45(4):849–854CrossRefGoogle Scholar
  42. 42.
    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41(2):466–470CrossRefGoogle Scholar
  43. 43.
    Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) Cell profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100CrossRefGoogle Scholar

Copyright information

© SBIC 2018

Authors and Affiliations

  • Elisa Palma
    • 1
    • 2
  • Hugo M. Botelho
    • 3
  • Goreti Ribeiro Morais
    • 1
    • 4
  • Inês Rodrigues
    • 1
  • Isabel Cordeiro Santos
    • 1
  • Maria Paula Cabral Campello
    • 1
  • Paula Raposinho
    • 1
  • Ana Belchior
    • 1
  • Susana Sousa Gomes
    • 1
  • Maria Fátima Araújo
    • 1
  • Isabel Correia
    • 2
  • Nadia Ribeiro
    • 2
  • Sofia Gama
    • 1
    • 5
  • Filipa Mendes
    • 1
    Email author
  • António Paulo
    • 1
    Email author
  1. 1.Centro de Ciências e Tecnologias Nucleares, Instituto Superior TécnicoUniversidade de LisboaBobadela LRSPortugal
  2. 2.Centro Química Estrutural, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  3. 3.BioISI—Biosystems and Integrative Sciences InstituteUniversity of Lisboa, Faculty of SciencesLisbonPortugal
  4. 4.Institute of Cancer Therapeutics, Faculty of Life SciencesUniversity of BradfordBradfordUK
  5. 5.Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations